An Introduction to Algorithmic Fairness Women and Non-Binary People in Mathematics Presentation

Dom Owens

University of Bristol

November 11th 2020

Contents

Introduction

Definitions and Measures

Causes

A Timeline

State of the Art

Introduction: Algorithmic Fairness

► We now make many decisions aided by statistical (AI, ML...) algorithms

Introduction: Algorithmic Fairness

- ► We now make many decisions aided by statistical (AI, ML...) algorithms
- ► Some of these affect our lives
- ▶ Parole decisions, hiring, credit scores...

Introduction: Algorithmic Fairness

- ► We now make many decisions aided by statistical (AI, ML...) algorithms
- Some of these affect our lives
- ▶ Parole decisions, hiring, credit scores...
- ► Algorithms *should* make decisions better than humans: More data, much faster, **less biased?**

Definitions: What are we dealing with?

Disparate Treatment: *intentionally* treating an individual differently based on their membership in a protected class

Definitions: What are we dealing with?

Disparate Treatment: *intentionally* treating an individual differently based on their membership in a protected class

Disparate Impact: negatively affecting members of a protected class more than others even if by a *seemingly neutral* policy

Measures: How can we quantify it?

- ▶ We make a yes/no decision (e.g. should this person be given this job?)
- ▶ With fair decision making $Y \in \{0, 1\}$,
- ▶ With our model we decide $\hat{Y} = f(\mathbf{x}) \in \{0, 1\}$,
- Subjects have membership $S \in \{0,1\}$ of a protected class (Minority ethnicity? Gender non-binary?...)

Measures: How can we quantify it?

- ▶ We make a yes/no decision (e.g. should this person be given this job?)
- ▶ With fair decision making $Y \in \{0, 1\}$,
- ▶ With our model we decide $\hat{Y} = f(\mathbf{x}) \in \{0, 1\}$,
- Subjects have membership $S \in \{0,1\}$ of a protected class (Minority ethnicity? Gender non-binary?...)

Group Fairness ratio

$$R = \frac{P(\hat{Y} = 1 | S = 0)}{P(\hat{Y} = 1 | S = 1)}$$

If $R \leq 1 - \epsilon$, we have evidence of discrimination

Measures: How can we quantify it?

- ▶ We make a yes/no decision (e.g. should this person be given this job?)
- ▶ With fair decision making $Y \in \{0, 1\}$,
- ▶ With our model we decide $\hat{Y} = f(\mathbf{x}) \in \{0, 1\}$,
- Subjects have membership $S \in \{0,1\}$ of a protected class (Minority ethnicity? Gender non-binary?...)

Group Fairness ratio

$$R = \frac{P(\hat{Y} = 1 | S = 0)}{P(\hat{Y} = 1 | S = 1)}$$

If $R \leq 1 - \epsilon$, we have evidence of discrimination

Outcome Test $P(Y = 1 | \hat{Y} = 1, S = 0) = P(Y = 1 | \hat{Y} = 1, S = 1)$ Is our model equally precise for those in/out of the protected group?

Causes: Where does this come from?

"Optimality" - algorithm aims for accuracy for majority groups

Causes: Where does this come from?

- "Optimality" algorithm aims for accuracy for majority groups
- Reconstructing protected characteristics from correlated features

Causes: Where does this come from?

- "Optimality" algorithm aims for accuracy for majority groups
- Reconstructing protected characteristics from correlated features
- ▶ Biases in data set (bad measurements, historical decisions...)

Credit scoring: should we approve a loan to this person?

- Credit scoring: should we approve a loan to this person?
- Uses bank data without protected characteristics

- Credit scoring: should we approve a loan to this person?
- Uses bank data without protected characteristics
- Evidence shows algorithm still discriminates

- Credit scoring: should we approve a loan to this person?
- Uses bank data without protected characteristics
- Evidence shows algorithm still discriminates
- Reconstructs these from address, university, web activity...

Case Study: Technical Hiring at Amazon (2014-2018)

 Amazon filtered applications for technical jobs

Case Study: Technical Hiring at Amazon (2014-2018)

- Amazon filtered applications for technical jobs
- Algorithm looked for similarities to previous hires

Case Study: Technical Hiring at Amazon (2014-2018)

- Amazon filtered applications for technical jobs
- Algorithm looked for similarities to previous hires
- ► Learned e.g. gender through choice of language on CV

► A-level exams cancelled

- ► A-level exams cancelled
- Ofqual proposed grades from algorithm fed with historical data on school achievement

- A-level exams cancelled
- Ofqual proposed grades from algorithm fed with historical data on school achievement
- Were schools on a fair footing? Different resources, class sizes, student backgrounds...

- A-level exams cancelled
- Ofqual proposed grades from algorithm fed with historical data on school achievement
- Were schools on a fair footing? Different resources, class sizes, student backgrounds...
 - Small classes not graded by algorithm

State of the Art: Causal Models

- Selecting a definition of fairness is hard, and depends on your application
- Some definitions are mutually incompatible

State of the Art: Causal Models

- Selecting a definition of fairness is hard, and depends on your application
- Some definitions are mutually incompatible
- Instead ask "Does the protected attribute have a causal effect on our prediction?"

State of the Art: Causal Models

- Selecting a definition of fairness is hard, and depends on your application
- Some definitions are mutually incompatible
- Instead ask "Does the protected attribute have a causal effect on our prediction?"
- 30 years ago, this would require a Randomised Control Trial
- Now, we can ask counterfactual questions on a massive scale (e.g. Causal Tree models)

State of the Art: User Tools

How can cutting-edge research help practitioners?

State of the Art: User Tools

- How can cutting-edge research help practitioners?
- ► Tools (Fairlearn etc.) being developed and released
- Integrate fairness decisions into model deployment

State of the Art: User Tools

- How can cutting-edge research help practitioners?
- ► Tools (Fairlearn etc.) being developed and released
- Integrate fairness decisions into model deployment
- Smart speakers, facial recognition, chatbot responses...

Conclusion

▶ Used unwisely, algorithms can discriminate

Conclusion

- Used unwisely, algorithms can discriminate
- ► This can have potentially very unfair outcomes

Conclusion

- Used unwisely, algorithms can discriminate
- ► This can have potentially very unfair outcomes
- **Don't despair!** Ongoing research, increased awareness, shiny new tools for end users