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ABSTRACT

T ime series analysis, the study of time-ordered data, is an historic and accomplished subfield
of statistics. A great number of methods have been proposed for the analysis of time series
data, and these have found use in many application areas. Often, however, these methods

correspond to models that do not account for two properties commonly found in the data. These
are non-stationarity, wherein the joint distribution of the underlying process is not constant, and
high dimensionality, where the number of concurrent series is possibly larger than the sample
size. This thesis proposes new methods for the statistical analysis of data with either or both of
these properties. We preface the thesis with a review of relevant literature.

First, in Chapter 3, we describe a data segmentation procedure for high dimensional data
which follow a regression model, where the parameters are piecewise-constant with respect to
time. In two steps, the method first compares parameter estimates over a moving window to
detect changes, then uses local refinements minimising a comparative loss for the final location
estimates. We prove that the method consistently detects and locates all changes at the minimax-
optimal rate (up to logarithmic factors) under Gaussianity, and is consistent under dependence
and heavy tails, and when changes are multiscale. The computational cost is small relative to
competing algorithms.

In Chapter 4, we describe a segmentation procedure for multiple time series which follow a
piecewise-stationary vector autoregression (VAR) model. The method uses a moving sum detector
to look for changes in the expectation of estimating functions. We prove this is consistent for
the number and locations of changes when the dimension is fixed. A series of methodological
extensions are proposed so that the algorithm may be used in less idealised settings, for example
with changes which are multiscale or only detectable with a local inspection parameter.

Chapter 5 describes an extension of the model and method from Chapter 4, where we treat
high-dimensional time series as observations from a dynamic factor model, allowing the latent
factors to follow a piecewise-stationary VAR. By applying the proposed method to estimated
principal components, we show that we consistently segment the data. We give a similar method
for segmenting a piecewise stationary factor-augmented regression, and combine this with
methods for forecasting under structural breaks, giving a comprehensive method for diffusion
index forecasting for non-stationary data.

Finally in Chapter 6 we discuss the factor-adjusted VAR model, designed for high dimen-
sional time series which exhibit strong serial and cross-sectional correlations, as well as sparse
idiosyncratic structure. We give an overview of the model, particularly estimation procedures
for the common and idiosyncratic components and of the implicit network structures, as well
as forecasting methods. A software package is described, with visualisation methods and tools
for the data-driven selection of tuning parameters, and we extensively study the computational
properties of the method.

We end the thesis with a discussion and directions for future work.
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INTRODUCTION

In many fields of statistical practice we observe time series data with non-stationary be-

haviour, such that the joint distribution of the underlying process changes over time. This

is a pertinent problem given that many models for time series data rely on (at least) second-

order stationarity; without taking this into account, our inferences and predictions may be highly

inaccurate. One modelling approach, perhaps the simplest, is to treat the data as piecewise

stationary, so that the behaviour is stationary between multiple unknown change points. Data

segmentation, or change point analysis, is the problem of estimating the number and locations of

these changes.

In recent years, improvements in data collection and storage have made high-dimensional

datasets readily available. In fields including macroeconomics, finance, and climate sciences,

we have access to time series datasets in which the number of concurrent series may be large

relative to number of observations. This setting poses a challenge for the many classical statistical

methods designed for a small, fixed number of series, calling for the development of theory and

methods which allow the number of series to diverge with the sample size.

Indeed, these two characteristics are often concurrent, as illustrated by the number of

applications throughout this thesis. In four chapters of this thesis, we propose statistical methods

which address one or both of these problems. The contributions of each chapter are described

below.

Chapter 2: Literature review We describe a number of the regression models commonly used

for time series analysis, namely linear regression, vector autoregression, and factor models. We

also pose the data segmentation problem, describing methods for estimating structural changes

in the canonical mean change problem and under the regression models of interest.
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CHAPTER 1. INTRODUCTION

Chapter 3: High-dimensional data segmentation in regression settings permitting heavy
tails and temporal dependence We propose a data segmentation methodology for the high-

dimensional linear regression problem, where the regression parameters are allowed to undergo

multiple changes. The proposed methodology, MOSEG, proceeds in two stages. The data are first

scanned for multiple change points using a moving window-based procedure, which is followed by

a location refinement stage. MOSEG is computationally efficient as the first stage takes place on

a coarse grid, and MOSEG is theoretically consistent in estimating both the total number and

the locations of the change points without requiring independence or sub-Gaussianity. In partic-

ular, it nearly matches minimax optimal rates when Gaussianity is assumed. We also propose

MOSEG.MS, a multiscale extension of MOSEG which, while comparable to MOSEG in terms of

computational complexity, achieves theoretical consistency for a broader parameter space that

permits multiscale change points. We demonstrate good performance of the proposed methods

in comparative simulation studies and for an economic dataset. The R software implementing

MOSEG and MOSEG.MS is available from https://github.com/Dom-Owens-UoB/moseg.

A version of Chapter 3 has been submitted for publication as Cho and Owens (2022), High-

dimensional data segmentation in regression settings permitting heavy tails and temporal

dependence.

Chapter 4: Moving sum data segmentation for vector autoregressive time series We

propose methods to segment multiple time series which follow a vector autoregressive model. We

use moving sum statistics to detect and locate multiple change points, giving asymptotic guaran-

tees for size, power, and the consistent estimation of the number and locations of change points. A

series of methodological extensions are proposed: (i) By evaluating the detector over a coarse grid,

we significantly reduce computational complexity while still achieving consistent estimation. (ii)

Dimension reduction methods, combined with a parametric bootstrap, allow the analysis of larger

panels. (iii) A recursive segmentation procedure is proposed for improved detection sensitivity. (iv)

A multiple-bandwidth procedure allows for the presence of multiscale changes. The methods are

validated by simulation studies and two applications to real datasets. An efficient implementation

is available in the R package mosumvar at github.com/Dom-Owens-UoB/mosumvar.

Chapter 5: Segmenting and forecasting macroeconomic data with factor-augmented
regression models We propose a methodology for diffusion index forecasting under non-

stationarity. Firstly, we give a data segmentation methodology for high-dimensional time series

which follow a factor model. The factors are assumed to follow a vector autoregressive model,

the parameters of which are allowed to undergo multiple changes. We give a similar method for

the segmentation of factor-augmented regression models. Based on the low-dimensional method

proposed in Chapter 4, we show these consistently estimate change points, are computationally

efficient, and can be used with methodological extensions such as a multiscale algorithm. We

finally use the model to produce forecasts, employing weighted estimation methods which account

2
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for the estimated change points. We test the performance of the methods in simulations and with

real macroeconomic data, where ours show favourable forecasting performance when compared

with rolling window estimation. An implementation in the R language is available via https:

//github.com/Dom-Owens-UoB/mosumfvar.

Chapter 6: Factor-adjusted network estimation and forecasting for high-dimensional
time series A suite of methodologies is proposed for the network estimation and forecasting of

high-dimensional time series under a factor-adjusted vector autoregressive model, which permits

strong spatial and temporal correlations in the data. These are implemented in the package fnets
for the R language. Additionally, we provide tools for visualising the networks underlying the

time series data after adjusting for the presence of factors. The package also offers data-driven

methods for selecting tuning parameters including the number of factors, vector autoregressive

order and thresholds for estimating the edge sets of the networks of interest in time series

analysis. We demonstrate various features of fnets on simulated datasets as well as real data on

electricity prices and asset volatilities. An efficient implementation is available in the R package

fnets on CRAN, and at https://github.com/Dom-Owens-UoB/fnets.

Content from Chapter 6 has been published in the Journal of Business and Economic Statistics

as Barigozzi et al. (2023), FNETS: Factor-adjusted network estimation and forecasting for high-

dimensional time series, and published in The R Journal as Owens et al. (2023), fnets: An R

Package for Network Estimation and Forecasting via Factor-Adjusted VAR Modelling.

Chapter 7: Discussion We end the thesis with a summary and reflection on the contributions,

highlighting directions for future work.

This thesis is structured as a series of independent works, each intended as contributions in

their own right. As such, some content may be repeated or reiterated between chapters.
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2
LITERATURE REVIEW

We review the literature relevant to the two topics of this thesis, namely high-dimensional

time series regression models (Section 2.1), then data segmentation (Section 2.2).

2.1 High-dimensional time series regression models

The models considered in this thesis are all cases of linear regression models, wherein the

conditional mean of a continuous response is modelled as a sum of paired products of regressors

and coefficients. These may be multivariate, such that there are possibly multiple regressors and

responses, and for time series data, where the regressors indexed at t may be formed from any

observations available up until t.

2.1.1 Linear regression

We observe pairs (Yt, X t), t = 1, . . . ,n, with X t = (X1t, . . . , X pt)> ∈Rp. These are modelled so that

Yt = X>
t β+εt, (2.1)

where β ∈ Rp is a fixed parameter vector, and εt is additive noise such that IE(εt) = 0,Var(εt) =
σ2 ∈ (0,∞). With fixed dimension p, this is perhaps the canonical statistical model, and is widely

studied due to its simplicity, interpretability, and ubiquity in applications (Dobson and Barnett,

2018). Here, the least squares estimator is

β̂
OLS = argminβ∈Rp

n∑
t=1

(Yt − X>
t β)2 = (

n∑
t=1

X tX>
t )−1(

n∑
t=1

X tYt).

When εt is Gaussian (and under some mild conditions), this is the maximum likelihood estimator.

Allowing p to diverge with n, this estimator quickly becomes infeasible as the sample covariance

will not be invertible.
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CHAPTER 2. LITERATURE REVIEW

One solution is the sparsity assumption, where only a handful of variables contribute to

modelling the response. Formally, this is a restriction on s= |β|0 =∑p
i=1 I{βi 6= 0}, the `0-norm of β,

i.e. the number of non-zero elements. Here we discuss estimation approaches designed for this

setting, see Bühlmann and van de Geer (2011) and Tibshirani (2011) for an overview.

The Lasso estimator In their seminal work, Tibshirani (1996) introduce the Lasso estimator

for β, which solves

β̂
Lasso(λ)= argminβ∈Rp

1
n

n∑
t=1

(Yt − X>
t β)2 +λ|β|1.

This objective penalises the estimator’s `1-norm, i.e. |β|1 =∑p
i=1 |βi|. This introduces some bias

into the estimator as a trade-off for reducing the variance. Moreover, very small estimated

coefficients will be pushed towards zero, effectively performing variable selection. This can be

improved by thresholding the estimator at some value. In practice, this means we can include

potentially many irrelevant predictors in our regression without affecting the predictive power.

Denote the sample covariance matrix as Σ̂ = n−1 ∑n
t=1 X tX>

t . For a set S ⊂ {1, . . . , p} with

|S| = s, let βS ∈Rs be the subvector of β with components in S. Let CS = {β ∈Rp : |βSC |1 ≤ 3|βS|1}

be a cone.

van de Geer and Bühlmann (2009) discuss conditions under which the Lasso estimator is

consistent. Compatibility holds for S if for some ω> 0 and for all β ∈CS, it holds that

|βS|21 ≤β>Σ̂β ·s/ω2.

This cannot be verified in general, as S is unknown. If the cardinality s is known, we may instead

consider the restricted eigenvalue (variously, restricted strong convexity) condition, that is, for all

β ∈CS with |β|0 ≤ s, there exists a constant C > 0 such that

ω|β|22 −Cs|β|21 ≤β>Σ̂β,

which implies compatibility. Under either of these conditions, by Bühlmann and van de Geer

(2011) Theorem 6.1, when λ≥ 4σ
√

log p
n , with high probability we have a bound for the prediction

error

|n−1
n∑

t=1
X>

t (β̂Lasso −β)|22 ≤ 4λ2s/φ2,

and for the `1-error

|β̂Lasso −β|1 ≤ 4λs/φ2,

where φ lower bounds the eigenvalues of Σ̂.

Due to the selection property of the Lasso estimator, we can consider the set of non-zero

elements Ŝ = {β̂i : β̂i 6= 0} as an estimator of S. The goal is typically to show that P[Ŝ = Ŝ] →
1 as n → ∞. Meinshausen and Bühlmann (2006) show this when neighborhood stability (or

irrepresentability) holds which, roughly speaking, requires submatrices of the sample covariance

to be far from linearly dependent, and when the smallest non-zero coefficient is sufficiently large,

i.e. mini∈S |βi| grows faster than
√
s log(p)/n .
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2.1. HIGH-DIMENSIONAL TIME SERIES REGRESSION MODELS

The Dantzig selector Candes and Tao (2007) propose the Dantzig selector, which solves the

`1-constrained problem

β̂
DS(λ)= argminβ∈Rp |β|1, such that |

n∑
t=1

X t(Yt − X>
t β)|∞ ≤λ,

where |β|∞ =maxi=1,...,p |βi|. This is the dual problem of the Lasso objective, and can be solved

using linear programming.

Let (X t)S be the subvector of X t with components in S. The isometry constant cs is the

smallest such that

(1− cs)|βS|22 ≤ |
n∑

t=1
(X t)>SβS|22 ≤ (1+ cs)|βs|22

for all S with |S| ≤ s. Consider also S′ with |S′| ≤ s′. The orthogonality constant ds,s′ where

s+s′ ≤ p is the smallest such that

β>
S (X t)S(X t)>S′βS′ ≤ ds,s′ |βS|2|βS′ |2.

Together these constants define the restricted isometry property c2s+ds,2s < 1. When this holds,

and λ≥√
2log p , we have the error bound

|β̂DS −β|22 ≤ Cλ2(σ2 +|β|22)

for some constant C with high probability.

`2 regularisation Similarly, the ridge estimator of Hoerl and Kennard (1970) solves

β̂
Ridge(λ)= argminβ∈Rp

1
n

n∑
t=1

(Yt − X>
t β)2 +λ|β|22.

This penalises the `2-norm, the square root of the sum of the squared values of all βi, i.e.

|β|2 =
√∑p

i=1 |βi|2 . The estimator achieves variance reduction, even when X t has non-isotropic

covariance, but does not perform variable selection.

The elastic net (Zou and Hastie, 2005) solves

β̂
ElasticNet(λ,α)= argminβ∈Rp

1
2n

n∑
t=1

(Yt − X>
t β)2 +λ

[
α|β|1 + 1

2
(1−α)|β|22

]
,

where α ∈ [0,1] controls the trade-off between the `1- and `2-penalties. When strong correlations

are present between two components of X t, the Lasso will perform poorly at selecting the true

non-zero variable, motivating the `2 penalty. In particular, this avoids some of the computational

difficulties which come with solving the Lasso objective. This estimator is termed "naive" as it

may possess a large bias. As such, the correction 1−α
α
λβ̂

ElasticNet(λ,α) is proposed.
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CHAPTER 2. LITERATURE REVIEW

Structured penalties In applications, specific structures may occur in the parameter vector,

and we can tailor the penalty to accommodate this. For example, when group structure exists

among the variables so that the parameter vector may be partitioned, we may use the group

penalty of Yuan and Lin (2006) to encourage some groups’ parameters to be set to zero. In this

setting, {1, . . . , p}=⋃m
i=1 g i is split into m groups g i, which possibly form a partition. Letting βg i

be the vector with components in g i, the group Lasso solves

β̂
GroupLasso(λ)= argminβ∈Rp

1
n

n∑
t=1

(Yt − X>
t β)2 +

m∑
i=1

λi|βg i
|2.

Huang and Zhang (2010) show that when the groups are sufficiently controlled, this estimator

outperforms the standard Lasso estimator in `2 error.

The adaptive penalty of Zou (2006) adds data-adaptive weights wi to each coefficient, so that

we solve

β̂
AdaptiveLasso(λ)= argminβ∈Rp

1
n

n∑
t=1

(Yt − X>
t β)2 +λ

p∑
i=1

wi|βi|.

This outperforms the Lasso in basis recovery, particularly when mixtures of large and small

coefficients are present.

Tibshirani et al. (2005) introduce the fused Lasso, solving

β̂
FusedLasso(λ)= argminβ∈Rp

1
n

n∑
t=1

(Yt − X>
t β)2 +λ1

p∑
i=1

|βi|+λ2

p∑
i=2

|βi −βi−1|. (2.2)

Using two regularisation parameters (λ1,λ2), this penalises differences between consecutive

pairs βi−1 and βi, which is useful when the index ordering has some meaning, for example for

time series data or in change point detection problems.

2.1.2 Vector autoregression

Suppose that we observe vectors X t, t = 1, . . . ,n, with X t = (X1t, . . . , X pt)> ∈ Rp. In the Vector

Autoregressive (VAR) model, these are modelled as

X t =
d∑

l=1
Al X t−l +εt, (2.3)

so that the present X t is linked to past observations up to d time steps behind, via transition

matrices Al , l = 1, . . . ,d (see Figure 2.1). The process is stationary (equivalently, stable) if and

only if

det

(
I p −

d∑
l=1

Al zl

)
6= 0 for |z| ≤ 1. (2.4)

We assume that {εt}n
t=1 is a zero-mean, white noise process such that IE(εt)= 0, Cov(εt)= S for

some positive definite matrix S ∈Rp×p, and Cov(εt,εt′ )=O for any t 6= t′. The best linear predictor

for one step ahead is X t+1|t =∑d
l=1 Al X t−l , and this can be iterated forwards in time for larger

8



2.1. HIGH-DIMENSIONAL TIME SERIES REGRESSION MODELS
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Figure 2.1: Time series data simulated from a sparse, stationary VAR process (2.3) (n = 500, p = 50,d = 1),
with each colour representing a different series.

forecast horizons. When p is fixed and n →∞, the transition matrices can be estimated by, for

example, the least squares estimator

ÂOLS = argminA∈Rp×p

n∑
t=2

|X t − AX t−1|22 = (
n−1∑
t=1

X tX>
t )−1(

n∑
t=2

X tX>
t−1).

Here we suppose d = 1; VARs with d ≥ 2 may be rewritten as a VAR(1) process and estimated

similarly. This is similar to the Yule-Walker estimator, which sums over all available samples in

the right-hand side of the above equation.

VARs are popular models for time series data in many disciplines, including economics (Koop,

2013), finance (Barigozzi and Brownlees, 2019), neuroscience (Kirch et al., 2015) and systems

biology (Shojaie and Michailidis, 2010). By fitting a VAR model to the data, we can infer dynamic

interdependence between the variables, and forecast future values. In particular, estimating

the non-zero elements of the VAR parameter matrices recovers directed edges between the

components of vector time series in a Granger causal network (see Figure 2.2). By estimating

the precision matrix (the inverse of the covariance matrix) of the innovations, we can define

a network representing their contemporaneous dependencies via partial correlations. Finally,

the inverse of the long-run covariance matrix of the data simultaneously captures lead-lag and

contemporaneous co-movements of the variables.

VAR models provide a framework for network inference. Dahlhaus (2000) define graphical

models for data with temporal dependence, analysing multivariate series for connections defined

by partial correlations. Eichler (2007) define path diagrams for time series, encoding Granger

9
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causal relationships. Billio et al. (2012) use factor-type assumptions to extend these definitions for

high dimensional series, and apply this to connectedness in finance and insurance applications.

Barigozzi and Brownlees (2019) model large series with a sparse vector autoregression where the

precision matrix of the innovations is also sparse, defining a collection of networks summarising

temporal and contemporaneous connections. Chen et al. (2023) allow the inferred network to

vary with time.

Granger causal network Granger causal heatmap

-0.4

-0.2

0.0

0.2

0.4

Figure 2.2: Granger causal network (left) and heatmap (right) for parameters estimated from data
simulated as in Figure 2.1

Structured estimation Fitting VAR models to the data quickly becomes a high-dimensional

problem, as the number of parameters grows quadratically with the dimensionality of the data.

There exists a mature literature on regularisation methods for estimating VAR models in high

dimensions under suitable structural assumptions on the VAR parameters. Basu and Michailidis

(2015) give finite-sample bounds for `1-penalised transition matrix estimation under sparsity.

Similarly, Kock and Callot (2015) give bounds on prediction errors and analyse the adaptive

Lasso. Han et al. (2015) adapt the Dantzig selector to the sparse VAR setting. Nicholson et al.

(2020) study a variety of penalties, with a particular focus on the case where d ≥ 2. Basu et al.

(2019) allow each transition matrix to be the sum of a low rank matrix and a sparse matrix,

which are estimated using a combination of the `1 penalty and a penalty on the nuclear norm, i.e.

the sum of the eigenvalues. The ridge estimator is employed by e.g. Ballarin (2021) and De Mol

et al. (2008) in a Bayesian setting. See Kock et al. (2020) for an overview of general penalties.

Consistency of the methods we have discussed is usually derived under the assumption

that the spectral density matrix of the data has bounded eigenvalues. This can be overcome

by assuming that much of the variance can be explained by the factor-type models studied in

Section 2.1.3, and the remaining structure is sparse. See for example Fan et al. (2020, 2021);

Krampe and Margaritella (2021).
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2.1.3 Factor models
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Figure 2.3: Time series data simulated from a GDFM process (6.2) (n = 500, p = 50, q = 2)

We give an overview of the factor modelling of high-dimensional time series, where strong

cross-sectional or serial correlations are explained by linearly loading onto finite-dimensional

vectors of factors. These strong dependencies are often observed in financial and macroeconomic

data, and so factor models have found applications including capital asset pricing (Ross, 1976),

financial risk management (Campbell et al., 1998), and nowcasting (Giannone et al., 2008).

Barhoumi et al. (2014); Hallin (2022); Hallin et al. (2019); Lippi et al. (2023); Stock and Watson

(2011) review the literature.

We observe X t, t = 1, . . . ,n, where

X t =χt +εt.

The processes χt and εt are the latent common and idiosyncratic components respectively. In

general, εt is treated as a white noise process which is independent of all χt.

Generalised dynamic factor model Among many time series factor models, the Generalised

Dynamic Factor Model (GDFM, Forni et al. (2000)) provides the most general approach where

the p-variate factor-driven component χt admits the representation

χt =B(L)ut =
∞∑
`=0

B`ut−` with ut = (u1t, . . . ,uqt)> and B` ∈Rp×q (2.5)

for some fixed q, where L stands for the lag operator. The q-variate random vector ut contains

common factors which are loaded across the variables and time by the filter B(L)=∑∞
`=0 B`L`,
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and it is assumed that u jt are i.i.d. with IE(u jt) = 0 and Var(u jt) = 1 (see Figure 2.3). Forni

et al. (2000, 2004, 2005) propose to estimate this in the frequency domain, applying Principal

Components Analysis (PCA) to the Fourier transform of the autocovariances of X t. Forni et al.

(2015) show that the model (6.2) admits a low-rank VAR representation with ut as the innovations

under mild conditions, and Forni et al. (2017) propose the estimators of B` and ut based on this

representation, using an estimator for the autocovariance of χt derived from frequency-domain

estimates of the spectral density.

Static factor model The GDFM (6.2) reduces to a static factor model (Bai, 2003; Fan et al.,

2013; Stock and Watson, 2002a) when B(L) admits a decomposition B(L)=M (1)(L)M (2)(L) with

M (k)(L)=∑mk
`=0 M(k)

`
L` for k = 1,2, where M(1) ∈Rp×q and M(2) ∈Rq×q. Then, we can write

χt =
m1∑
`=0

M(1)
`

f t−` =ΛF t where F t = (f >
t , . . . , f >

t−m1
)> and f t =

m2∑
`=0

M(2)
`

ut−`, (2.6)

with r = q(m1 +1) as the dimension of static factors F t. In this case, PCA with the sample covari-

ance will provide a consistent non-parametric estimator for the loadings and factors (Bai and Ng,

2002; Stock and Watson, 1999). For forecasting, we can show that χn+a|n =Γχ(−a)EχM
−1
χ E>

χχn,

where Mχ ∈Rr×r is a diagonal matrix with the r eigenvalues of Γχ(0) on its diagonal and Eχ ∈Rp×r

the matrix of the corresponding eigenvectors, and the autocovariance (ACV) matrices of ξt are

denoted by Γξ(`)= IE(ξt−`ξ>t ) for `≥ 0 and Γξ(`)= (Γξ(−`))> for `< 0.

State-space models When M(2)
`

,`= 0, . . . ,m2 are square-summable (for example, when m2 is

finite), we may approximate f t in (6.3) by a VAR as per (2.3), where ut are the innovations. In two

papers, Doz et al. (2011, 2012) propose to use the Kalman filter and Quasi-Maximum Likelihood

methods to estimate the factors, loadings, and autoregression parameters. The strength of this

representation is its simplicity and interpretability while still accounting for dynamics, allowing

the use of adapted estimation methods when there are missing or irregularly-spaced data. From

this model, we can produce forecasts for the factor series as we would with a VAR for observed

data, and apply the estimated loadings to forecast the panel.

Factor-augmented regression models Factor-augmented regression (FAR) models extend

the linear regression model (2.1) to include latent regressors, so that Yt is regressed onto

zt =
(
F>

t ,w>
t
)> ∈ Rp+r, letting w>

t ∈ Rp be observed covariates. This provides a method for esti-

mating regressions when many possibly-relevant predictors are available, particularly when

the predictors are highly correlated. Stock and Watson (1999) and Bai and Ng (2009) propose to

estimate the factors with PCA and the regression parameters with least squares.
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2.2 Data segmentation

We give a general piecewise-stationary model for time series data. Suppose we observe time-

ordered data {X t}n
t=1 of vectors X t = (X1t, X2t, . . . , X pt)> ∈Rp, possibly accompanied by a series of

regressors Xt. Under piecewise stationarity we draw observations from a switching process, i.e.

there exist concurrent series {X ( j)
t }t∈Z and {X( j)

t }t∈Z, j = 1, . . . , q+1 but we observe X t = X ( j)
t when

k j−1 +1≤ t ≤ k j. Each process is distributed such that

X ( j)
t ∼ F(X( j)

t ,θ j),

where θ j is a vector of regime-specific parameters and each θ j−1 6= θ j. Data segmentation, or

change point analysis, refers to the estimation of the unknown number q, and if q ≥ 1, the

unknown locations {k j} j=1,...,q.

Our focus is estimation, though it may also be of interest to perform inference on the number

and locations (Frick et al., 2014; Liu et al., 2022b). We restrict ourselves to the world of parametric

models, but we could generalise our model further to include non-parametric distributional

changes (McGonigle and Cho, 2023; Padilla et al., 2019). Also, we place ourselves in the offline

setting, where all data are available to the analyst retrospectively. This is in contrast to the

online (or sequential) setting, where observations are gathered regularly as time continues, and

there may be limits on the amount of previous data that can be stored (Xie et al., 2021).

2.2.1 The canonical problem: univariate mean changes

The canonical problem studied in the data segmentation literature is that of mean changes in

a univariate series, dating back to Page (1954). Here, we observe a single (p = 1) series such

that X t = µ j + εt for k j−1 +1 ≤ t ≤ k j, where each µ j is a constant and {εt}t∈Z is a mean-zero

process, see Figure 2.4 for an example. When q ≥ 1, the difficulty of the problem is defined by the

signal-to-noise ratio SNR= δ2∆/σ2, where δ=min j=2,...,q+1 |µ j −µ j−1| is the minimum jump size,

∆=min j=1,...,q+1(k j−k j−1) is the minimum segment length, and σ2 = IE(ε2
t ). Intuitively, detection

and localisation is easier when jumps are large and spaced far apart, and when the noise is small.

Consistency of methods usually follows by placing restrictions directly on the SNR, or implicitly

via assumptions on the data generating process.

To solve this problem, many segmentation algorithms are available in the literature. These

are broadly divided by Cho and Kirch (2021a) into local and global methods, and correspondingly

scan-type and penalisation methods by Yu (2020).

Local methods Local methods tend to be variants which scan for changes with the weighted

cumulative sum (CUSUM) detector on t = s, . . . , e

Ts,k,e(X )=
√

(k− s+1)(e−k)
e− s+1

(X̄s,k − X̄k+1,e), where X̄a,b =
1

b−a+1

b∑
t=a

X t, (2.7)
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Figure 2.4: Time series data simulated from a process with a piecewise constant mean (dashed line)
(n = 150,k1 = 50,k2 = 100)

where 1≤ s < k < e ≤ n. When q = 0, under our conditions on {X t}t∈Z we will have max1<k<n |T1,k,n(X )| ≤
Dn with high probability for certain thresholds Dn. Conversely, when q ≥ 1 we will have that

max1<k<n |T1,k,n(X )| > Dn under conditions on the changes. These facts combined give a frame-

work for testing for the presence of changes. Indeed when q = 1, k̂ = argmax1<k<n |T1,k,n(X )|
consistently estimates k1, giving a method for identifying possibly one change. The question is

then how to detect and locate multiple changes. Any algorithm will ideally meet the minimax-

optimal detection rate, such that max j=1,...,q |k̂ j − k j| = OP (δ−2), which requires that the SNR

grows faster than log(n), as per e.g. Yu (2020).

Binary Segmentation (BS, Scott and Knott (1974); Vostrikova (1981)) was the first attempt in

this direction. The algorithm begins by scanning with s = 1 and e = n. If maxs<k<e |Ts,k,e(X )| ≤ Dn,

the algorithm terminates. Otherwise, k̂ = argmaxs<k<e |Ts,k,e(X )| is declared a change point,

and the algorithm recurs with s = 1, e = k̂ and with s = k̂+1, e = n. This continues until each

branch of the algorithm terminates (see Figure 2.5). This has computational complexity O(n logn).

Fryzlewicz (2014) show that when ∆≥ c1na,δ≥ c2n−b and Dn ≥ c3n3/4 for constants c1, c2, c3 > 0

and a ≤ 1,b ≥ 0, with high probability the algorithm detects exactly q changes and localises at

the rate OP (n−2δ−2∆−2 logn).

The BS algorithm is shown to be consistent when q ≥ 2 in Venkatraman (1993), but under

certain configurations the location estimators will perform poorly. To overcome this, Fryzlewicz

(2014) propose to draw M random intervals (s, e) over which to scan, allowing (with high probabil-

ity) the isolation of each change inside an interval in which it will be detected. This requires less

14
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Figure 2.5: CUSUM detectors (2.7) (absolute value) resulting from Binary Segmentation on data in
Figure 2.4. Estimated change points are marked in red. Solid and dashed lines indicate the first and
second iteration respectively.

stringent assumptions on the spacing between changes, and attains a the minimax-optimal local-

isation rate, though incurs complexity O(nM). Under the milder condition that ∆1/2δ≥ c log1/2 n

for some c > 0, and Dn ≥ c log1/2 n, the algorithm localises at the rate OP (δ−2 logn), which matches

the minimax-optimal rate up to a logarithmic factor.

Alternatively, moving sum (MOSUM) procedures scan over all intervals with s = k−G+1 and

e = k+G, where k =G, . . . ,n−G and G is a bandwidth. Eichinger and Kirch (2018) propose to locate

multiple changes as values k̂ which locally maximise |Ts,k,e(X )| over intervals which are large

enough relative to G, and such that |Ts,k,e(X )| > Dn (see Figure 2.6). This has complexity O(n).

Under mild conditions on the errors, and when G is chosen so that 2G ≤∆ and δ≥ log(n/G)/G,

the algorithm localises at the optimal rate.

The multiscale setting, where large frequent and small infrequent changes occur in the same

series (see Figure 2.7 for an example), poses a challenge for a fixed-bandwidth procedure. The

difficulty of the problem here is defined by min j=2,...,q+1 |µ j −µ j−1|min(k j −k j−1,k j−1 −k j−2), i.e.

the minimum over all changes of the product of the jump size and the neighbouring segment

length. Messer et al. (2014) and Messer et al. (2018) perform the MOSUM procedure with multiple

bandwidths G = {G1, . . . ,GH}, merging the resulting change points of each call in ascending order

of the bandwidth. Cho and Kirch (2021b) allow for asymmetric bandwidth choices, and perform a

local pruning step for coherent estimation.
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Figure 2.6: MOSUM detector |Tk−G+1,k,k+G(X )| with G = 20 for data in Figure 2.4. Estimated change
points are marked in red, and the threshold in blue. Produced with the MOSUM package (Meier et al.,
2021).
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Figure 2.7: Time series data simulated from a process with a piecewise constant mean and multiscale
changes (dashed line) (the "blocks" signal of Fryzlewicz (2014))

16



2.2. DATA SEGMENTATION

Global methods These aim to find estimators k̂1, . . . , k̂ q̂ which optimise an objective function

over the whole data series. `0-penalisation methods are formulated as

argmin1<k1≤···≤kq<n
0≤q≤qmax

{
Cost(X1, . . . , Xn;k1, . . . ,kq)+pen(q,k1, . . . ,kq)

}
,

where Cost(X1, . . . , Xn;k1, . . . ,kq) is a cost function of the data and candidate changes, pen(q,k1, . . . ,kq)

is a penalty on the model complexity, and qmax is an upper bound on the number of changes.

For the canonical mean change problem, Yao (1988) propose to minimise the Schwarz Criterion

(Schwarz, 1978), so that

Cost(X1, . . . , Xn;k1, . . . ,kq)=−n log

(
q∑

j=0

k j+1∑
t=k j+1

(
X t − X̄k j+1,k j+1

)2
)

,

and pen(q,k1, . . . ,kq) = (2q+1)logn. For more general exponential family models, Killick et al.

(2012) propose the cost

Cost(X1, . . . , Xn;k1, . . . ,kq)=−
q∑

j=0
sup
θ j

log`(Xk j+1, . . . , Xk j+1 ;θ j),

where log`(X1, . . . , Xn;θ j) is a parametric likelihood function, and pen(q,k1, . . . ,kq)=λ(q+1) is a

linear penalty with a constant λ> 0. To solve this with dynamic programming, the worst case

complexity is O(qmaxn2), though this can be improved to O(n) expected time for certain problems

(Killick et al., 2012; Rigaill, 2010).

To overcome these computational concerns, the problem can be relaxed to one of `1-penalisation,

so that

Cost(X1, . . . , Xn; g)= 1
n

n∑
t=1

(X t − gt)2 +λ
n−1∑
t=1

|gt+1 − gt|, g = (g1, . . . , gn)>. (2.8)

Change point locations are identified by jumps in the ĝ minimising (2.8) such that ĝ k̂ 6= ĝ k̂+1.

This uses the fused Lasso (2.2), and Harchaoui and Lévy-Leduc (2010) propose an algorithm

which solves this with complexity O(q3
max + qmaxn logn). This is reformulated as a group Lasso

problem by Bleakley and Vert (2011), incurring a cost of O(n logn).

Separately, we mention Bayesian approaches (Adams and MacKay, 2007; Fearnhead and

Liu, 2007). Generally, as well as a likelihood on the data, priors are placed on the number and

locations of the change points, and inferred using numerical methods. These perform estimation

and give uncertainty quantification.

2.2.2 Regression models

Moving beyond the canonical mean change problem, in this thesis we are primarily concerned

with the regression models of the types discussed in Section 2.1. We give a discussion here of the

literature relevant to each.
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2.2.2.1 Linear regression

In the setting of Section 2.1.1, the regression parameter is allowed to vary over time, so that

Yt =


X>

t β1 +εt for k0 = 0< t ≤ k1,

X>
t β2 +εt for k1 < t ≤ k2,

...

X>
t βq+1 +εt for kq < t ≤ n = kq+1.

(2.9)

At each change point k j, the vector of parameters undergoes a shift such that β j 6=β j+1 for each

j = 1, . . . , q.

The data segmentation problem under (6.4), when the dimension p is fixed, has been ap-

proached with dynamic programming procedures (Bai and Perron, 1998; Qu and Perron, 2007)

and moving sum procedures (Kirch and Reckrühm, 2022), among others. In high-dimensional set-

tings, when there exists at most one change point, Lee et al. (2016) formulate the Lasso problem

to allow the detection of a single change, while Kaul et al. (2019b) aim to locate a single change

using plug-in parameter estimates to minimise a prediction loss, giving a computationally cheap

method. For the general case with unknown q, several data segmentation methods exist which

adopt dynamic programming (Leonardi and Bühlmann, 2016; Rinaldo et al., 2021; Xu et al., 2022),

fused Lasso (Bai and Safikhani, 2022; Wang et al., 2021b) or wild binary segmentation (Wang

et al., 2021a) algorithms for the detection of multiple change points, and Bayesian approaches

also exist (Datta et al., 2019). Qian et al. (2023) propose a method for fast segmentation using a

fixed grid of parameters in the search space. Gao and Wang (2022) consider the case where the

vector of the change itself is sparse without requiring the sparsity of β j. A related yet distinct

problem of testing for the presence of a single change point under the regression model has been

considered in Wang and Zhao (2022) and Liu et al. (2022a), and results on inference for the

locations are proposed in Zhang (2023).

2.2.2.2 Vector autoregression

We observe {X t}n
t=1 consisting of time-ordered vectors X t = (X1t, X2t, . . . , X pt)> ∈Rp, which follow

a piecewise stationary VAR model

X t =


X (1)

t , k0 +1= 1≤ t ≤ k1,

X (2)
t , k1 +1≤ t ≤ k2,

...

X (q+1)
t , kq +1≤ t ≤ kq+1 = n,

(2.10)
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where each {X ( j)
t }t∈Z is a stationary VAR(d) process (in the sense of (2.4), or Equation (2.1.9) of

Lütkepohl (2005)), i.e.

X ( j)
t = a jX

( j)
t−1 +εt, where a j =


a j(1)>

...

a j(p)>

 ∈Rp×(dp+1) and X
( j)
t−1 =


1

X
( j)
1,t−1
...

X
( j)
p,t−1

 ∈Rdp+1

for j = 1, . . . , q+1. Here, X( j)
i,t−1 = (X ( j)

i,t−1, . . . , X ( j)
i,t−d)> collects the d lagged values of X ( j)

it , the i-th

channel of X ( j)
t , and a j(i) collects the parameters involved in predicting the i-th channel. Then

under (5.3), there are q change points at unknown locations k j, 1≤ j ≤ q, such that a j 6= a j+1 for

all j, and our aim is to estimate the total number and the locations of the q change points. The

innovation process {εt}n
t=1 is such that IE(εt) = 0, Cov(εt) = S for some positive definite matrix

S ∈Rp×p, and Cov(εt,εt′)=O for any t 6= t′.
Detection of a single change point under a VAR model has been considered in many papers,

including Dvořák and Prášková (2013) and Dvořák (2017) who use Wald-type statistics, Hlávka

et al. (2017) who use empirical characteristic functions, and Kirch et al. (2015) who use score

statistics. Bai (2000) and Bai and Perron (2003) use dynamic programming to estimate multiple

changes in the parameters and the error covariance matrix, which is generalised by Qu and

Perron (2007) to offer a range of tests. Bayesian inference (Ahelegbey et al., 2021) and group

Lasso (Li et al., 2020) approaches have also been studied.

In the high-dimensional setting, the model requires structural assumptions for consistent

estimation. Under sparsity, Safikhani and Shojaie (2022) and Safikhani et al. (2022) use a fused

Lasso estimator, while Cho et al. (2022) use a moving-window detector based on regularised

Yule-Walker estimation. Wang et al. (2019) propose dynamic programming. Under the same

model, Maeng et al. (2021) address the related problem of anomaly detection. Under approximate

sparsity, Bai et al. (2021) use a fused Lasso estimator for fast detection of changes in Granger-

causal networks. Under low-rank assumptions, Bai et al. (2023) compare parameter estimates

over moving windows. Bai et al. (2020b) detect changes under a simultaneous low rank and

sparse assumption.

2.2.2.3 Factor models

We consider an observation model as in (5.3), and each {X ( j)
t }t∈Z is drawn from a stationary factor

model of the form (6.2). There is a vast literature on instability in factor models. Broadly, these

can be divided according to the part (or parts) of the model in which instability is present. These

are the (i) loadings, (ii) factor number, and (iii) second-order structure. For a single break in (i)

and (ii), tests and estimators are proposed by e.g. Breitung and Eickmeier (2011), Chen et al.

(2014), Han and Inoue (2015), Corradi and Swanson (2014), Bai et al. (2020a), and Koo et al.

(2023), and multiple changes are considered in Su and Wang (2017), Ma and Su (2018), and Liu

19



CHAPTER 2. LITERATURE REVIEW

and Zhang (2021b). Less focus, however, has been given to changes in (iii). Barigozzi et al. (2018)

consider a static factor model with changes in both the factor and idiosyncratic components. Cho

et al. (2022) do the same assuming a generalised dynamic factor model, while Barigozzi and

Trapani (2020) propose a sequential method. Kim et al. (2021) consider testing for a single change

under a state-space model.

Considering in particular the factor-augmented regression model, Corradi and Swanson

(2014) and Massacci (2019) perform inference for a single break, while Wang et al. (2015) perform

estimation. Banerjee et al. (2008) allow for instability in the factor model, while Stock and Watson

(2009) allow for instability in the regression relationship.
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3
HIGH-DIMENSIONAL DATA SEGMENTATION IN REGRESSION

SETTINGS PERMITTING HEAVY TAILS AND TEMPORAL DEPENDENCE

3.1 Introduction

Regression modelling in high dimensions has received great attention with the development

of data collection and storage technologies, and numerous applications are found in

natural and social sciences, economics, finance and genomics, to name a few. There is a

mature literature on high-dimensional linear regression modelling under the sparsity assumption,

see Bühlmann and van de Geer (2011) and Tibshirani (2011) for an overview. When observations

are collected over time in highly nonstationary environments, it is natural to allow for shifts in

the regression parameters. Permitting the parameters to vary over time in a piecewise constant

manner, data segmentation, a.k.a. multiple change point detection, provides a conceptually simple

framework for handling nonstationarity in the data.

In this chapter, we consider the problem of multiple change point detection under the following

model: We observe (Yt,xt), t = 1, . . . ,n, with xt = (X1t, . . . , X pt)> ∈Rp where

Yt =


x>

t β0 +εt for θ0 = 0< t ≤ θ1,

x>
t β1 +εt for θ1 < t ≤ θ2,

...

x>
t βq +εt for θq < t ≤ n = θq+1.

(3.1)

Here, {εt}n
t=1 denotes a sequence of errors satisfying IE(εt) = 0 and Var(εt) =σ2

ε ∈ (0,∞) for all t,

which may be serially correlated. At each change point θ j, the vector of parameters undergoes a

change such that δ j =β j−β j−1 for all j = 1, . . . , q, so that the size of the change is δ j = |β j−β j−1|2.

Then, our aim is to estimate the set of change points Θ= {θ j, 1 ≤ j ≤ q} by estimating both the
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total number q and the locations θ j of the change points.

The data segmentation problem under (3.1) is considered by Bai and Perron (1998), Qu and

Perron (2007), Zhao et al. (2022) and Kirch and Reckrühm (2022), among others, when the

dimension p is fixed. In high-dimensional settings, when there exists at most one change point

(q = 1), Lee et al. (2016) and Kaul et al. (2019b) consider the problem of detecting and locating

the change point, respectively. For the general case with unknown q, several data segmentation

methods exist which adopt dynamic programming (Leonardi and Bühlmann, 2016; Rinaldo et al.,

2021; Xu et al., 2022), fused Lasso (Bai and Safikhani, 2022; Wang et al., 2021b) or wild binary

segmentation (Wang et al., 2021a) algorithms for the detection of multiple change points, and

Bayesian approaches also exist (Datta et al., 2019). A related yet distinct problem of testing

for the presence of a single change point under the regression model has been considered in

Wang and Zhao (2022) and Liu et al. (2022a), and Gao and Wang (2022) consider the case where

β j −β j−1 is sparse without requiring the sparsity of β j, j = 0, . . . , q.
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Figure 3.1: Execution time in seconds of MOSEG and MOSEG.MS and competing methodologies on
simulated datasets (y-axis is in log scale for ease of comparison). Left: p varies while n = 450 is fixed.
Right: n varies while p = 100 is fixed. For each setting, 100 realisations are generated and the average
execution time is reported. See Section 3.4.2 for full details.

Against the above literature background, we list the contributions made in this chapter by

proposing computationally and statistically efficient data segmentation methods.

(i) Computational efficiency. For the data segmentation problem under (3.1), often the

computational bottleneck is the local estimation of the regression parameters via penalised

M-estimation such as Lasso. We propose MOSEG, a moving window-based two-stage

methodology, and its multiscale extension, which are both highly efficient computationally.

In the first stage, MOSEG scans the data for multiple change points using a moving

window of length G on a coarse grid of size O(nG−1), which is followed by a simple location

refinement step minimising the local residual sum of squares. The adoption of a coarse

grid in the first stage contributes greatly to the reduction of Lasso estimation steps while

losing little detection power. Figure 3.1 demonstrates the computational competitiveness
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of the proposed MOSEG and MOSEG.MS where they greatly outperform the existing

methodologies in their execution time for a range of n and p.

(ii) Multiscale change point detection. We propose a multiscale extension of the single-

bandwidth methodology MOSEG. Referred to as MOSEG.MS, it is fully adaptive to the

difficult scenarios with multiscale change points, where large frequent parameter shifts

and small changes over long stretches of stationarity are simultaneously present, while

still enjoying computational competitiveness. To the best of our knowledge, MOSEG.MS is

the only data segmentation methodology under the model (3.1) for which the detection and

localisation consistency is derived explicitly for the broad parameter space that permits

multiscale change points. Also, while there exist several data segmentation methods that

propose to apply moving window-based procedures with multiple bandwidths, MOSEG.MS

is the first extension in high dimensions with a guaranteed rate of localisation.

(iii) Theoretical consistency in general settings. We show the consistency of MOSEG and

MOSEG.MS in estimating the total number and the locations of multiple change points.

Under Gaussianity, their separation and localisation rates nearly match the minimax

lower bounds up to a logarithmic factor. Moreover, in our theoretical investigation, we

permit temporal dependence as well as tail behaviour heavier than sub-Gaussianity. This,

compared to the existing literature where independence and (sub-)Gaussianity assumptions

are commonly made, shows that the proposed methods work well in situations that are

more realistic for empirical applications.

The rest of the chapter is organised as follows. Section 3.2 introduces MOSEG, the single-

bandwidth methodology, and establishes its theoretical consistency. Then in Section 3.3, we

propose its multiscale extension, MOSEG.MS, and show that it achieves theoretical consistency

in a broader parameter space. Numerical experiments in Section 3.4 demonstrate the competi-

tiveness of the proposed methods in comparison with the existing data segmentation algorithms

and Section 3.6 provides a real data application to equity premium data. In the Appendix, we

present all the proofs. The R software implementing MOSEG and MOSEG.MS is available from

https://github.com/Dom-Owens-UoB/moseg.

Notation. For a random variable X , we write ‖X‖ν = [IE(|X |ν)]1/ν for ν> 0. For a= (a1, . . . ,ap)> ∈
Rp, we write supp(a) = {i, 1 ≤ i ≤ p : ai 6= 0}, |a|0 = ∑p

i=1 I{ai 6=0}, |a|1 = ∑p
i=1 |ai|, |a|2 = (

∑p
i=1 a2

i )1/2

and |a|∞ =max1≤i≤p |ai|. For a square matrix A, let Λmax(A) and Λmin (A) denote its maximum

and minimum eigenvalues, respectively. For a set A , we denote its cardinality by |A |. For se-

quences of positive numbers {an} and {bn}, we write an . bn if there exists some constant C > 0

such that an/bn ≤ C as n →∞. Finally, we write a∨b =max(a,b) and a∧b =min(a,b).
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3.1.1 Literature review and comparison with the existing methods

Table 3.1 provides an overview of the theoretical properties of MOSEG and MOSEG.MS in

comparison with the methods proposed in Wang et al. (2021a), Kaul et al. (2019a) and Xu et al.

(2022) for the change point problem in (3.1) under Gaussianity, as well as their computational

complexity. For a given methodology, let K̂ denote the set of estimated change points. When the

magnitude of change ∆, measured by either

∆(1) = min
1≤ j≤q

δ2
j · min

0≤ j≤q
(θ j+1 −θ j) or ∆(2) = min

1≤ j≤q
δ2

j min(θ j −θ j−1,θ j+1 −θ j), (3.2)

diverges faster than the separation rate sn,p associated with the method, all q changes are

detected by K̂ with asymptotic power one and their locations are consistently estimated with

the rate `n,p, such that min1≤ j≤q mink̂∈K̂ w j|k̂−θ j| = OP (`n,p). Here, w j refers to the relative

difficulty in locating θ j which is related to the jump size δ j. Let Lasso(p) denote the cost of solving

a Lasso problem with p variables.

Table 3.1: Comparison of data segmentation methods developed for the model (3.1) in their theoretical
properties under Gaussianity and computational complexity (for given tuning parameters). Here, s =
max0≤ j≤q |S j| and S= |∪q

j=0 S j|, where S j is the set of non-zero components of β j. The separation rate
sn,p is a lower bound for (3.11), while `n,p bounds the scaled localisation error as in the text. Let ∆ be the
magnitude of change as in (3.2) and w j is the relative difficulty in locating θ j.

Separation Localisation Computational
sn,p ∆ `n,p w j complexity

MOSEG s log(p∨n) ∆(1) s log(p∨n) δ j O( n
rG ·Lasso(p))

MOSEG.MS s log(p∨n) ∆(2) s log(p∨n) δ j O( n
rG1

·Lasso(p))

Wang et al. (2021a) s log(p∨n) ∆(1) s log(n) δ j O(n log2(n) ·GroupLasso(p))
Kaul et al. (2019a) S log(p∨n) ∆(1) S log(p) δ O(q̃ ·Lasso(p)+SA(q̃))
Xu et al. (2022) s log(p∨n) ∆(1) s log(p∨n) δ j O(n2 p2 +n2 ·Lasso(p))

Wang et al. (2021a) propose a method which learns the projection that is well-suited to reveal

a change over each local segment and combines it with the wild binary segmentation algorithm

(Fryzlewicz, 2014) for multiple change point detection. Kaul et al. (2019a) propose to minimise an

`0-penalised cost function given a set of candidate estimators of size q̃. Their theoretical analysis

implicitly assumes that min j(θ j+1 −θ j) scales linearly in n, and the simulated annealing adopted

for minimising the penalised cost, denoted by SA(q̃) in Table 3.1, has complexity ranging from

O(q̃4) on average to being exponential in the worst case. Xu et al. (2022) investigate the dynamic

programming algorithm of Rinaldo et al. (2021) for minimising an `0-penalised cost function in a

more general setting. In Table 3.1, we report the separation and localisation rates derived in Xu

et al. (2022) for the pre-estimators from the dynamic programming algorithm; in their proposal,

the pre-estimators are further refined and their exact minimax optimality is established under a

stronger condition on the size of changes, namely that ∆(1)/(s2 log3(pn))→∞.
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We also mention Zhang et al. (2015) where the data segmentation problem is treated as a

high-dimensional regression problem with a group Lasso penalty, which only provides that the

estimation bias is of oP (n). Leonardi and Bühlmann (2016) consider both dynamic programming

and binary segmentation algorithms are considered for change point estimation, and we refer to

Rinaldo et al. (2021) for a detailed discussion on their results.

From Table 3.1, we conclude that MOSEG.MS is highly competitive both computationally and

statistically. In specifying the properties of Kaul et al. (2019a), the global sparsity S= |∪q
j=0 S j|

can be much greater than the segment-wise sparsity s, particularly when the number of change

points q is large. We investigate the theoretical properties of MOSEG.MS in the broadest

parameter space possible which is formulated with ∆(2) instead of ∆(1) as in all the other papers;

recall that from the discussion following (3.18) comparing ∆(l), l = 1,2, we always have ∆(1) ≤∆(2)

and the former can be much smaller than the latter when large shifts over short intervals and

small changes over long stretches of stationarity are simultaneously present in the signal.

Besides, the theoretical properties of MOSEG.MS reported in Table 3.1 do not require inde-

pendence unlike other works (with the exception of Xu et al. (2022)), and extend beyond i.i.d.

sub-Gaussianity. In the presence of serial dependence and sub-Weibull tails (through having γ> 1

as in Condition 1 (a)), Xu et al. (2022) require that ∆(1) & (s log(np))4γ+2γ′−1 for the detection of all

change points, where a smaller value of γ′ ∈ (0,∞) imposes a faster decay of the serial dependence.

This is comparable to the detection boundary of MOSEG, ∆(1) & (s log(np))4γ+3 which is implied

by Assumption 3.5 (a) under Condition 1 (a). We remark that Condition 1 assumes algebraically

decaying serial dependence whereas γ′ of Xu et al. (2022) governs the rate of exponentially

decaying serial dependence. The localisation rate in Corollary 3.3 (i) is also comparable to that

attained by the preliminary estimators of Xu et al. (2022) produced by a dynamic programming

algorithm; as noted above, under a stronger condition on ∆(1), they derive a further refined rate.

3.2 Single-bandwidth methodology

We introduce MOSEG, a single-bandwidth two-stage methodology for data segmentation in

regression settings. We first describe its two stages in Section 3.2.1, establish its theoretical

consistency in Section 3.2.2 and verify meta-assumptions made for the theoretical analysis in

Section 3.2.3 for a class of linear processes with serial dependence and heavier tails than that

permitted under sub-Gaussianity.

3.2.1 MOSEG

3.2.1.1 Stage 1: Moving window procedure on a coarse grid

Single-bandwidth moving window procedures have successfully been adopted for univariate

(Eichinger and Kirch, 2018; Preuss et al., 2015a; Yau and Zhao, 2016), multivariate (Kirch and

Reckrühm, 2022) and high-dimensional (Cho et al., 2022) time series segmentation. Often in
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a moving window-based data segmentation procedure, the key challenge is to carefully design

a detector statistic which, when adopted for scanning the data for changes, has good detection

power against the type of changes which is of interest to detect.

For a given bandwidth G ∈N satisfying G ≤ n/2, our proposed detector statistic is

Tk(G)=
√

G
2

∣∣β̂k,k+G − β̂k−G,k
∣∣
2 , G ≤ k ≤ n−G. (3.3)

Here, β̂s,e denotes an estimator of the vector of parameters obtained from (Yt,xt), s+1≤ t ≤ e, for

any 0≤ s < e ≤ n. The statistic Tk(G) contrasts the local parameter estimators from two adjacent

data sections over {k−G +1, . . . ,k} and {k+1, . . . ,k+G}. Then, Tk(G) is expected to form local

maxima near the change points where the local parameter estimators differ the most, and thus it

is well-suited for detecting and locating the change points under the model (3.1).

We propose to obtain the local estimator β̂s,e via Lasso, as

β̂s,e(λ)= argminβ∈Rp

e∑
t=s+1

(Yt −x>
t β)2 +λpe− s |β|1 (3.4)

for some tuning parameter λ> 0. In what follows, we suppress the dependence of this estimator

on λ when there is no confusion. The estimand of β̂k−G,k is

β∗
k−G,k =

1
G

L(k)∑
j=L(k−G+1)

{
(θ j+1 ∧k)− ((k−G)∨θ j)

}
β j, (3.5)

where L(t) = { j, 0 ≤ j ≤ q : θ j +1 ≤ t} denotes the index of a change point θ j that is the closest

to t while lying strictly to its left. In short, β∗
k−G,k is a weighted sum of β j with the weights

corresponding to the proportion of the intervals {k−G+1, . . . ,k} overlapping with {θ j +1, . . . ,θ j+1}.

Scanning the detector statistic Tk(G) over all k ∈ {G, . . . ,n−G} requires the computation of the

Lasso estimator O(n) times. This is far fewer than O(n2) times required by dynamic programming

algorithms for `0-penalised cost minimisation (Rinaldo et al., 2021; Xu et al., 2022), but it may

still pose a computational bottleneck when the data sequence is very long or its dimensionality

ultra high. Instead, we propose to evaluate Tk(G) on a coarser grid only for generating pre-

estimators of the change points. Let T denote the grid over which we evaluate Tk(G), which is

given by

T =T (r,G)=
{

G+brGcm, 0≤ m ≤
⌊

n−2G
rG

⌋}
(3.6)

with some constant r ∈ [G−1,1) that controls the coarseness of the grid. When r =G−1, we have

the finest grid T = {G, . . . ,n−G} and the grid becomes coarser with increasing r.

Motivated by Eichinger and Kirch (2018), who considered the problem of detecting multiple

shifts in the mean of univariate time series using a moving window procedure, we propose to

accept all significant local maximisers of Tk(G) over k ∈T as the pre-estimators of the change
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points. That is, for some threshold D > 0 and a tuning parameter η ∈ (0,1], we accept all θ̃ ∈T

that simultaneously satisfy

Tθ̃(G)> D and θ̃ = argmaxk∈T : |k−θ̃|≤ηG Tk(G). (3.7)

That is, at such θ̃, the detector Tθ̃(G) exceeds the threshold and attains a local maximum over

the interval of length ηG. We denote the set collecting all pre-estimators fulfilling (3.7), by

Θ̃ = {θ̃ j, 1 ≤ j ≤ q̂ : θ̃1 < . . . < θ̃q̂} with q̂ = |Θ̃| as the estimator of the number of change points.

This grid-based approach substantially reduces the computational complexity by requiring the

Lasso estimators to be computed only O(n/brGc) times. Even so, it is sufficient for detecting the

presence of all q change points, provided that r is chosen not too large (see Theorem 3.1 (i) below).

We remark that the idea of utilising only a sub-sample of the data for detecting the presence of

change points, has been proposed for univariate mean change point detection in Lu et al. (2017).

The next section describes the location refinement step applied to the pre-estimators of change

point locations.

3.2.1.2 Stage 2: Location refinement

Once the set of pre-estimators Θ̃ is generated by the first-stage moving window procedure on

a coarse grid, we further refine the location estimators. It involves the local evaluation and

minimisation of the following objective function

Q
(
k;a,b, γ̂L, γ̂R)= k∑

t=a+1
(Yt −x>

t γ̂
L)2 +

b∑
t=k+1

(Yt −x>
t γ̂

R)2 for k = a+1, . . . ,b, (3.8)

for suitably chosen a, b, γ̂L and γ̂R. A similar idea has been considered for location refinement in

the change point literature, see e.g. Kaul et al. (2019b) and Xu et al. (2022).

For each j = 1, . . . , q̂, let θ̃L
j = θ̃ j −bG/2c and θ̃R

j = θ̃ j +bG/2c, and consider the following local

parameter estimators

β̂
L
j = β̂0∨(θ̃L

j −G),θ̃L
j

and β̂
R
j = β̂θ̃R

j ,(θ̃R
j +G)∧n, (3.9)

which serve as the estimators of β j−1 and β j, respectively. Then in Stage 2, we propose to obtain

a refined location estimator of θ j from its pre-estimator θ̃ j, as

θ̂ j = argminθ̃ j−G+1≤k≤θ̃ j+G Q
(
k; θ̃ j −G, θ̃ j +G, β̂L

j , β̂
R
j

)
, (3.10)

for all j = 1, . . . , q̂. Referring to the methodology combining the two stages as MOSEG, we provide

its algorithmic description in Algorithm 1. In Figure 3.2, we demonstrate the algorithm on data

simulated with a single change located at θ1 = 100.
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Figure 3.2: Results from Algorithm 1 for data simulated with a single change located at θ1 = 100. The
lower panel plots Tk(G) in black, with the chosen threshold marked horizontally. The stage one estimator
θ̃1 is marked vertically in red, and the corresponding stage 2 estimator θ̂1 is marked in purple. The upper
panel visualises Q(k; θ̃1 −G, θ̃1 +G, β̂L

1 , β̂R
1 ).

Algorithm 1: MOSEG: Single-bandwidth two-stage data segmentation methodology
under a regression model.

input :Bandwidth G, grid resolution r, penalty λ, threshold D, η ∈ (0,1]

initialise : Θ̃=;, Θ̂=;
// Stage 1

Compute Tk(G) in (3.3) for all k ∈T =T (r,G)

Add all θ̃ satisfying Tθ̃(G)> D and θ̃ = argmink∈{θ̃−bηGc+1,...,θ̃+bηGc}∩T Tk(G) to Θ̃, and set
Θ̃= {θ̃ j, 1≤ j ≤ q̂}

// Stage 2

for j = 1, . . . , q̂ do
Identify θ̂ j = argminθ̃ j−G+1≤ j≤θ̃ j+GQ(k; θ̃ j −G, θ̃ j +G, β̂L

j , β̂
R
j ) with β̂L

j and β̂R
j computed

as in (3.9), and add it to Θ̂
end
return Θ̂

3.2.2 Consistency of MOSEG

To establish the consistency of MOSEG, we make the following assumptions on (xt,εt), 1≤ t ≤ n.

Assumption 3.1 is commonly made in the literature on high-dimensional regression and change
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point problems thereof.

Assumption 3.1. We assume that IE(xt) = 0, IE(εt) = 0 and Var(εt) = σ2
ε for all t = 1, . . . ,n, and

that Cov(xt)=Σx has its eigenvalues bounded, i.e. there exist 0≤ω≤ ω̄<∞ such that

ω≤Λmin(Σx)≤Λmax(Σx)≤ ω̄.

Assumptions 3.2 and 3.3 below extend the deviation bound and restricted strong convexity

(RSC) conditions required for high-dimensional M-estimation (Loh and Wainwright, 2012; Ne-

gahban et al., 2012; van de Geer and Bühlmann, 2009), to change point settings. They are met e.g.

by a class of linear processes accommodating serial dependence and non-Gaussian tail behaviour,

as verified later in Section 3.2.3. We explicitly state these meta-assumptions to highlight that the

consistency of MOSEG derived in this section is not limited to such processes only.

Assumption 3.2 (Deviation bound). There exist fixed constants C0,CDEV > 0 and some ρn,p → ∞
as n, p →∞, such that P(D(1) ∩D(2))→ 1, where

D(1) =
{

max
0≤s<e≤n, e−s≥C0ρ2

n,p

∣∣∣∣∣ 1p
e− s

e∑
t=s+1

εtxt

∣∣∣∣∣∞ ≤ CDEVρn,p

}
,

D(2) =

 max
0≤s<e≤n, e−s≥C0ρ

2
n,p

|{s+1,...,e}∩Θ|≤1

∣∣∣∣∣ 1p
e− s

e∑
t=s+1

(Yt −x>
t β

∗
s,e)xt

∣∣∣∣∣∞ ≤ CDEVρn,p

 .

Assumption 3.3 (Restricted strong convexity). There exist fixed constants CRSC > 0 and τ ∈ [0,1)

such that P(R(1) ∩R(2))→ 1, where

R(1) =
{

e∑
t=s+1

a>xtx>
t a≥ (e− s)ω|a|22 −CRSC log(p)(e− s)τ|a|21 for all

0≤ s < e ≤ n satisfying e− s ≥ C0ρ
2
n,p and a ∈Rp

}
,

R(2) =
{

e∑
t=s+1

a>xtx>
t a≤ (e− s)ω̄|a|22 +CRSC log(p)(e− s)τ|a|21 for all

0≤ s < e ≤ n satisfying e− s ≥ C0ρ
2
n,p and a ∈Rp

}
.

For each j = 0, . . . , q, we denote by S j = supp(β j) the support of β j, and by s=max0≤ j≤q |S j|
the maximum segment-wise sparsity of the regression parameters. We make the following

assumptions on the size of change δ j = |β j −β j−1|2 and the spacing between the neighbouring

change points through imposing conditions on G.

Assumption 3.4. There exists some constant Cδ > 0 such that max1≤ j≤qδ j ≤ Cδ.

Assumption 3.5. The bandwidth G fulfils the following conditions with τ, ρn,p and ω introduced

in Assumptions 3.1, 3.2 and 3.3.
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(a) 2G ≤min1≤ j≤q+1(θ j −θ j−1).

(b) There exists a fixed constant C1 > 0 such that

min
1≤ j≤q

δ2
jG ≥ C1 max

{
ω−2sρ2

n,p,
(
ω−1s log(p)

)1/(1−τ)}
.

Assumption 3.4 is a technical condition under which we focus on the more challenging

regime where the size of change is allowed to tend to zero; an analogous condition found in

Lee et al. (2016), Kaul et al. (2019b), Wang et al. (2021a) and Xu et al. (2022). In particular, it

rules out the case where Var(Yt) diverges for some t, since Var(Yt)≥ω∑q
j=0 |β j|22 · I{θ j+1≤t≤θ j} +σ2

ε .

Assumption 3.5 (a) relates the choice of bandwidth G to the minimum spacing between the change

points. Together, (a) and (b) specify the separation rate imposing a lower bound on

∆(1) = min
1≤ j≤q

δ2
j · min

0≤ j≤q
(θ j+1 −θ j), (3.11)

for all the q change points to be detectable by MOSEG. Later in Section 3.3, we propose a

multiscale extension of MOSEG which achieves consistency under a more relaxed condition than

Assumption 3.5.

Theorem 3.1. Suppose that Assumptions 3.1, 3.2, 3.3, 3.4 and 3.5 hold. Let the tuning parame-

ters satisfy λ≥ 4CDEVρn,p, r ∈ [1/G,1/4), η ∈ (4r,1] and

48
p
sλ

ω
< D < η

4
p

2
min

1≤ j≤q
δ j

p
G . (3.12)

Then on D(1) ∩D(2) ∩R(1) ∩R(2), the following holds.

(i) Stage 1 of MOSEG returns Θ̃= {θ̃ j, 1≤ j ≤ q̂ : θ̃1 < . . .< θ̃q̂} which satisfies

q̂ = q and |θ̃ j −θ j| ≤ 48
p

2sG λ

ωδ j
+brGc <

⌊
G
2

⌋
for each j = 1, . . . , q.

(ii) There exists a large enough constant c0 > 0 such that Stage 2 of MOSEG returns Θ̂ =
{θ̂ j, 1≤ j ≤ q̂ : θ̂1 < . . .< θ̂q̂} which satisfies

max
1≤ j≤q

δ2
j |θ̂ j −θ j| ≤ c0 max

(
sρ2

n,p, (s log(p))
1

1−τ
)
.

Theorem 3.1 (i) establishes that Stage 1 of MOSEG correctly estimates the number of

change points as well as identifying their locations by the pre-estimators with some accuracy.

There is a trade-off between computational efficiency and theoretical consistency with respect

to the choice of r. On one hand, increasing r leads to a coarser grid T with its cardinality

|T | =O(n/(rG)), and thus reduces the computational cost. On the other, the pre-estimators lie

in the grid such that the best approximation to each change point θ j can be as far from θ j as

brGc/2, which is reflected on the localisation property of the pre-estimators. Theorem 3.1 (ii)

derives the rate of estimation for the second-stage estimators θ̂ j which shows that the location

estimation is more challenging when the size of change δ j is small. Finally, we always have

max1≤ j≤qδ
−2
j max(sρ2

n,p, (s log(p))1/(1−τ)).G .min1≤ j≤q+1(θ j −θ j−1) under Assumption 3.4.
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3.2.3 Verification of Assumptions 3.2 and 3.3

Assumptions 3.2 and 3.3 generalise the deviation bound and the RSC condition which are

often found in the high-dimensional M-estimation literature, to accommodate change points,

serial dependence and heavy-tailedness. Condition 1 gives instances of {(xt,εt)}n
t=1 that fulfil

Assumptions 3.2 and 3.3 and specify the corresponding ρn,p and τ.

Condition 1. Suppose that for i.i.d. random vectors ξt = (ξ1t, . . . ,ξp+1,t)> ∈ Rp+1, t ∈ Z, with

IE(ξt)= 0 and Cov(ξt)= I, we have[
xt

εt

]
=

∞∑
`=0

D`ξt−` with D` = [D`,ik, 1≤ i,k ≤ p+1] ∈R(p+1)×(p+1) (3.13)

subject to IE(xtεt)= 0. Further, there exist constants Ξ> 0 and ς> 2 such that

|D`,ik| ≤ Cik(1+`)−ς with max

{
max

1≤k≤p+1

p+1∑
i=1

Cik, max
1≤i≤p+1

p+1∑
k=1

Cik

}
≤Ξ (3.14)

for all `≥ 0. Finally, we impose either of the two conditions on ξit.

(a) There exist some constants Cξ > 0 and γ ∈ (0,2] such that (IE(|ξit|ν))1/ν = ‖ξit‖ν ≤ Cξν
γ for

all ν≥ 1. In other words, ‖ξit‖ψν
:= supν≥1ν

−1/γ‖ξit‖ν ≤ Cξ.

(b) ξit ∼iid N (0,1).

Proposition 3.2. Suppose that Assumptions 3.1 and 3.4 and Condition 1 hold. Then, there exist

some constants c1, c2 > 0 such that P(D(1)∩D(2)∩R(1)∩R(2))≥ 1−c1(p∨n)−c2 , with ω=Λmin(Σx)/2,

ω̄= 3Λmax(Σx)/2, and τ and ρn,p chosen as below.

(i) Under Condition 1 (a), we set τ= (4γ+2)/(4γ+3) and ρn,p = log2γ+3/2(p∨n).

(ii) Under Condition 1 (b), we set τ= 0 and ρn,p =√
log(p∨n) .

Under Condition 1, {(xt,εt)}n
t=1 is a linear process with algebraically decaying serial de-

pendence, according to the functional dependence measure of Zhang and Wu (2017). Also,

Condition 1 (a) permits heavier tail behaviour than that allowed under sub-Gaussianity or

sub-exponential distributions when γ> 1/2 and γ> 1, respectively. The proof of Proposition 3.2

follows using Lemma 12 of Loh and Wainwright (2012), which establishes a lower Restricted

Strong Convexity bound.

Remark 3.1. The consistency of Lasso-type estimator (when q = 0) under serial dependence

and non-Gaussianity, has been investigated under functional dependence or mixing conditions

(Adamek et al., 2020; Han and Tsay, 2020; Wong et al., 2020; Wu and Wu, 2016). In the change

point literature, Wang and Zhao (2022) propose a change point test and investigate its properties

under β-mixing, and Xu et al. (2022) analyse the `0-penalised least squares estimation approach
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when the functional dependence of {xt}n
t=1 and {εt}n

t=1 decays exponentially. Relaxing the Gaus-

sianity, it is typically required that xt is a sub-Weibull random vector, i.e. supa∈B2(1) ‖a>xt‖ψν
<∞

for some γ> 0 (where Bd(r)= {a : |a|d ≤ r}) and similarly, ‖εt‖ψγ
<∞. Under these assumptions,

the common approach is to verify the deviation bound and RSC conditions analogous to those

made in Assumptions 3.2–3.3, with which the consistency of the Lasso estimator is derived

(locally in the case of the change point detection problem).

Instead, we explicitly state the meta-assumptions and give Condition 1 as one scenario under

which these assumptions are met. The proposed MOSEG achieves consistency in multiple change

point detection as shown in Theorem 3.1 whenever Assumptions 3.2–3.3 are met, which can be

verified using the arguments adopted in the aforementioned literature.

Corollary 3.3 follows immediately from Theorem 3.1 and Proposition 3.2.

Corollary 3.3. Suppose that Assumptions 3.1, 3.4 and 3.5 and Condition 1 hold, and λ, r, η

and D are chosen as in Theorem 3.1. Then, there exist constants ci > 0, i = 0,1,2, such that

Θ̂= {θ̂ j, 1≤ j ≤ q̂ : θ̂1 < . . .< θ̂q̂} returned by MOSEG satisfies the following.

(i) Under Condition 1 (a), we have

P

(
q̂ = q and max

1≤ j≤q
δ2

j |θ̂ j −θ j| ≤ c0 (s log(p∨n))4γ+3
)
≥ 1− c1(p∨n)−c2 .

(ii) Under Condition 1 (b), we have

P

(
q̂ = q and max

1≤ j≤q
δ2

j |θ̂ j −θ j| ≤ c0s log(p∨n)
)
≥ 1− c1(p∨n)−c2 .

Corollary 3.3 (ii) shows that under Gaussianity, the rate of localisation attained by MOSEG

matches the minimax lower bound up to log(p∨n), see Lemma 4 of Rinaldo et al. (2021). At the

same time, Assumption 3.5 (b) translates to ∆(1) & s log(p∨n) in this setting, nearly matching

the minimax lower bound on the separation rate derived in Lemma 3 of Rinaldo et al. (2021) up

to the logarithmic term.

3.3 Multiscale methodology

The single-bandwidth methodology proposed in Section 3.2 enjoys theoretical consistency as

well as computational efficiency, but faces the difficulty arising from identifying a bandwidth

that satisfies Assumption 3.5 (a)–(b) simultaneously, that is, to identify one which is sufficiently

large to identify the signal of the change but small enough that multiple regimes are not

coverered by the active window. In this section, we propose MOSEG.MS, a multiscale extension of

MOSEG, and show that it achieves consistency in a parameter space broader than that allowed by

Assumption 3.5, and thus alleviates the difficulty associated with the choice of a single bandwidth.
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In the context of a univariate series with changes in the mean where we observe X t =µ j +εt,

and δ j =µ j −µ j−1, Figure 2.7 demonstrates a divergence between ∆(1) and ∆(2). Large jumps δ j

occur at changes θ j with small neighbouring regime lengths, such that min(θ j −θ j−1,θ j+1 −θ j)

is small. In terms of ∆(1), the signal is very small, but in terms of ∆(2), the signal is sufficiently

large such that detection and localisation are possible with a multiscale algorithm.

3.3.1 MOSEG.MS: Multiscale extension of MOSEG

Similarly to MOSEG, MOSEG.MS consists of moving window-based data scanning and location

refinement but it takes a set of bandwidths as an input. The key innovation lies in that for each

change point, MOSEG.MS learns the bandwidth best-suited for its detection and localisation from

the given set of bandwidths. While there exist multiscale extensions of moving sum procedures,

they are mostly developed for univariate time series segmentation (Cho and Kirch, 2021b; Messer

et al., 2014) and to the best of our knowledge, this is a first attempt at rigorously studying such

an extension in a high-dimensional setting. Below we describe MOSEG.MS step-by-step.

Step 1: Pre-estimator generation. Given a set of bandwidths G = {Gh, 1 ≤ h ≤ H : G1 <
. . . < GH}, we generate the coarse grid associated with each Gh and the parameter r by Th =
T (r,Gh), see (3.6). As in Stage 1 of MOSEG, the sets of pre-estimators Θ̃(Gh) are generated

for h = 1, . . . ,H, and we denote by Θ̃(G ) = ∪H
h=1Θ̃(Gh) the pooled set of all such pre-estimators.

By (3.7), at each θ̃ ∈ Θ̃(Gh), we have Tθ̃(Gh)> D and θ̃ = argmaxk∈Iη(θ̃)∩Th
Tk(Gh), where Iη(θ̃)=

{θ̃−bηGhc+1, . . . , θ̃+bηGhc} denotes the detection interval associated with θ̃. For simplicity, we

write I1(θ̃)=I (θ̃). Below, we sometimes write θ̃(G) ∈ Θ̃(G) to highlight that the pre-estimator is

obtained with the bandwidth G, and denote by G(θ̃) the bandwidth involved in the detection of a

pre-estimator θ̃. If some θ̃ is detected with more than one bandwidths, we distinguish between

them.

Step 2: Anchor estimator identification. Next, we identify anchor change point estimators

θ̃A(G) ∈ Θ̃(G ) detected at some G ∈G which satisfy

⋃
h:Gh<G

⋃
k∈Θ̃(Gh)

{
I (k)∩I (θ̃A(G))

}
=;. (3.15)

That is, each anchor change point estimator does not have its detection interval overlap with the

detection interval of any pre-estimator that is detected with a finer bandwidth. Denote the set of

all such anchor change point estimators by Θ̃A = {θ̃A
j , 1 ≤ j ≤ q̂ : θ̃A

1 < . . . < θ̃A
q̂ }, with q̂ = |Θ̃A| as

an estimator of the number of change points q.

Step 3: Pre-estimator clustering. We find subsets of the pre-estimators in Θ̃(G ) denoted by

C j, j = 1, . . . , q̂, as described below. Initialised as C j =;, for each j, we add to C j the jth anchor
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estimator θ̃A
j as well as all θ̃ ∈ Θ̃(G ) which simultaneously fulfil

I (θ̃)∩I (θ̃A
j ) 6= ;, and

{θ̃−G(θ̃)−bG(θ̃)/2c+1, . . . , θ̃+G(θ̃)+bG(θ̃)/2c}∩I (θ̃A
j′ )=; for all j′ 6= j. (3.16)

Step 4: Location refinement. For each C j, j = 1, . . . , q̂, we denote the smallest and the largest

bandwidths associated with the detection of the pre-estimators in C j, by Gm
j and GM

j , respectively,

and the corresponding pre-estimators by θ̃m
j and θ̃M

j (when |C j| = 1, we have θ̃m
j = θ̃M

j = θ̂A
j and

Gm
j =GM

j ). Setting G∗
j = b3Gm

j /4+GM
j /4c, we identify the local minimiser of the objective function

defined in (3.8), as

θ̌ j = argminθ̃m
j −G∗

j +1≤k≤θ̃m
j +G∗

j
Q

(
k; θ̃m

j −G∗
j , θ̃m

j +G∗
j , β̂L

j , β̂
R
j

)
, (3.17)

with β̂
L
j = β̂(θ̃m

j −Gm
j −G∗

j )∨0,θ̃m
j −Gm

j
and β̂

R
j = β̂θ̃m

j +Gm
j ,(θ̃m

j +Gm
j +G∗

j )∧n.

Repeatedly performing (3.17) for j = 1, . . . , q̂, we obtain Θ̌= {θ̌ j, 1≤ j ≤ q̂}.

An algorithmic description of MOSEG.MS is given in Algorithm 8. The identification of anchor

Algorithm 2: MOSEG.MS: Multiscale extension of MOSEG.
input :A set of bandwidths G , grid resolution r, penalty λ, threshold D, η ∈ (0,1]

initialise : Θ̃A =;, Θ̌=;, C j =; for all j

// Pre-estimator generation

for h = 1, . . . ,H do
Initialise Θ̃(Gh)=;
Compute Tk(Gh) in (3.3) for all k ∈Th =T (r,Gh)

Add all θ̃ satisfying Tθ̃(Gh)> D and θ̃ = argmink∈Iη(θ̃)∩Th
Tk(Gh), to Θ̃(Gh)

end

// Anchor change point estimator identification

Identify all θ̃(G) ∈∪H
h=1Θ̃(Gh) satisfying (3.15), and add all such estimators to Θ̃A, which

is denoted by Θ̃A = {θ̃A
j , 1≤ j ≤ q̂ : θ̃A

1 < . . .< θ̃A
q̂ }

for j = 1, . . . , q̂ do
// Pre-estimator clustering

Identify all θ̃ ∈∪H
h=1Θ̃(Gh) satisfying (3.16) and add it to C j

// Location refinement

Add θ̌ j obtained as in (3.17) to Θ̂
end
return Θ̌

change point estimators bears some resemblance with the bottom-up merging proposed in Messer
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et al. (2014), but the anchor estimators do not come with a guaranteed rate of localisation. Instead,

we cluster the pre-estimators and learn the bandwidth G∗
j well-suited for localising each θ j in a

data-driven way, with which we obtain a refined estimator. Figure 3.3 demonstrates the steps of

the algorithm on simulated data.

Remark 3.2 (Bandwidth generation). Cho and Kirch (2021b) propose to use G generated as a

sequence of Fibonacci numbers, for a multiscale extension of the moving sum procedure proposed

in Eichinger and Kirch (2018) in the context of univariate mean change point detection. For some

finest bandwidth G0 =G1, we iteratively produce Gh, h ≥ 2, as Gh =Gh−1 +Gh−2. Equivalently,

we set Gh = FhG0 where Fh = Fh−1 +Fh−2 with F0 = F1 = 1. This is repeated until for some H,

it holds that GH < bn/2c while GH+1 ≥ bn/2c. By induction, Fh = O(((1+p
2 )/2)h) such that the

thus-generated bandwidth set G satisfies |G | =O(log(n)).

3.3.2 Consistency of MOSEG.MS

We make the following assumption on the size of change δ j and the spacing between the neigh-

bouring change points.

Assumption 3.5′. Let G denote the set of bandwidths generated as in Remark 3.2 with G1 ≥
C0 max{ρ2

n,p, (ω−1s log(p))1/(1−τ)}. Then, for each change point θ j, j = 1, . . . , q, there exists a band-

width G( j) ∈G such that

(a) 4G( j) ≤min(θ j+1 −θ j,θ j −θ j−1), and

(b) δ2
jG( j) ≥ 4C1 max

{
ω−2sρ2

n,p,
(
ω−1s log(p)

)1/(1−τ)
}

with C1 from Assumption 3.5.

If there are multiple such bandwidths, let G( j) denote the smallest one.

Assumption 3.5′ relaxes Assumption 3.5 by requiring that for each θ j, there exists one

bandwidth G( j) ∈G fulfilling the requirements imposed on a single bandwidth in the latter for all

j = 1, . . . , q. Assumption 3.5′ effectively places a condition on

∆(2) = min
1≤ j≤q

δ2
j ·min(θ j+1 −θ j,θ j −θ j−1) (3.18)

for MOSEG.MS to detect all q changes. Compared to ∆(1) defined in (3.11), we always have

∆(1) ≤∆(2) and, if frequent large changes and small changes over long stretches of stationarity

are simultaneously present, the former can be considerably smaller than the latter, see also the

discussion in Cho and Kirch (2021a). To the best of our knowledge, Theorem 3.4 below provides a

first result obtained under the larger parameter space defined with ∆(2), in establishing the con-

sistency of a data segmentation methodology for the problem in (3.1). We refer to Section 3.1.1 for

further discussions and comprehensive comparison between MOSEG, MOSEG.MS and competing

methodologies.
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Figure 3.3: Results from the MOSEG.MS procedure on simulated data with changes located at θ1 =
100,θ2 = 150, and θ3 = 250. Each panel plots the outcome from a call with a given bandwidth. All candidate
pre-estimators are marked with a vertical line, and the three selected as anchors are dashed. Those not
selected as anchors are clustered as per Step 3, and used to determine the bandwidth in Step 4.

Theorem 3.4. Suppose that Assumptions 3.1, 3.2, 3.3, 3.4 and 3.5′ hold. Let the tuning parame-

ters satisfy λ≥ 4CDEVρn,p, r ∈ [G−1
1 ,1/4), η ∈ (4r,1] and

48
p
sλ

ω
< D < η

4
p

2
min

1≤ j≤q
δ j

√
G( j) . (3.19)

Then, there exists a constant c0 > 0 such that on D(1) ∩D(2) ∩R(1) ∩R(2), MOSEG.MS returns
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Θ̌= {θ̌ j, 1≤ j ≤ q̂ : θ̌1 < . . .< θ̌q̂} which satisfies

q̂ = q and max
1≤ j≤q

δ2
j |θ̌ j −θ j| ≤ c0 max

(
sρ2

n,p, (s log(p))
1

1−τ
)
.

Corollary 3.5. Suppose that Assumptions 3.1, 3.4 and 3.5′ and Condition 1 hold, and λ, r

and D are chosen as in Theorem 3.4. Then, there exist constants ci > 0, i = 0,1,2, such that

Θ̌= {θ̌ j, 1≤ j ≤ q̂ : θ̌1 < . . .< θ̌q̂} returned by MOSEG.MS satisfies the following.

(i) Under Condition 1 (a), we have

P

(
q̂ = q and max

1≤ j≤q
δ2

j |θ̌ j −θ j| ≤ c0 (s log(p∨n))4+3γ
)
≥ 1− c1(p∨n)−c2 .

(ii) Under Condition 1 (b), we have

P

(
q̂ = q and max

1≤ j≤q
δ2

j |θ̌ j −θ j| ≤ c0s log(p∨n)
)
≥ 1− c1(p∨n)−c2 .

3.4 Numerical experiments

3.4.1 Choice of tuning parameters

We discuss the selection of tuning parameters involved in MOSEG and MOSEG.MS, namely

the set of bandwidths G , the grid T (r,G) in (3.6), η ∈ (0,1] involved in the pre-estimation of the

change points (see (3.7)), the penalty parameter λ and the threshold D.

Selection of G . As described in Remark 3.2, the set of bandwidths G is determined once

the finest bandwidth G1 is chosen. To gain insights about the minimum bandwidth required

for the reasonable performance of the local Lasso estimators, we conducted numerical experi-

ments by simulating datasets under (6.4) with q = 0, xt ∼iid Np(0,Ip), εt ∼iid N (0,1) and β0 =
(β0,1, . . . ,β0,p)> where β0,i, 1 ≤ i ≤ s, is sampled uniformly from [−1,1] and β0,i = 0, s+1 ≤ i ≤ p.

Varying (n, p,s,G) and generating 100 realisations for each setting, we record the relative `2-error

max0≤k≤n−G |β0|−1
2 |β̂k,k+G −β0|2 for each realisation. Then, we obtain a simple rule to determine

the finest bandwidth as G1 =G1(n, p)= bc∗0 exp(c∗1 loglog(n)+ c∗2 loglog(p))c with pre-determined

constants c∗i , i = 0,1,2, which are chosen as transforms of the estimated regression coefficients

from regressing the 90%-percentile of the logarithm of the estimation errors over 100 realisations,

onto the corresponding log(G), loglog(p) and loglog(n) (with R2 = 0.8945). Adopting the Fibonacci

rule in Remark 3.2 sometimes gives a sequence of bandwidths that grows too quickly when the

sample size n is small. Therefore, with the finest bandwidth G1 chosen as above, we recommend

generating bandwidths as Gh = b(h+2)G1/3c for h ≥ 2. Throughout the simulation studies and

real data applications, we set H = 3.
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Selection of D and λ. Theorems 3.1 and 3.4 provide ranges of values for λ and D for theoretical

consistency, but they involve unknown parameters as is typically the case in the change point

literature. For their simultaneous selection, we adopt a cross validation (CV) method motivated by

Zou et al. (2020). LetΛ denote the grid of possible values for λ, which is chosen as an exponentially

increasing sequence from 10−3λmax up to λmax with λmax =max0≤k≤n−G |∑k+G
t=k+1 xtYt|∞/

p
G the

smallest value with which we obtain β̂k,G = 0 for all 0≤ k ≤ n−G. For given G ∈G and λ ∈Λ, we

generate Θ̃(G,λ)= {θ̃ j(G,λ), 1≤ j ≤ q̃0(G,λ)}, the set of pre-estimators with D = 0, i.e. we take all

local maximisers of the MOSUM statistics according to (3.7); due to the detection rule, we always

have q̃0(G,λ)≤ n/(2ηG). Sorting the elements of Θ̃(G,λ) in the decreasing order of the associated

MOSUM detector values, we generate a sequence of nested change point models

;= Θ̃[0](G,λ)⊂ Θ̃[1](G,λ)⊂ . . .⊂ Θ̃[q̃0(G,λ)](G,λ)= Θ̃(G,λ).

Then, using the odd-indexed observations (Yt,xt), t ∈J1 = {2t+1, t = 0, . . . ,b(n−1)/2c}, we produce

local estimators of the regression parameters and the even-indexed observations (Yt,xt), t ∈J0 =
{1, . . . ,n}\J1, is used for validation. Specifically, we evaluate CV(G,λ,m)=RSS0(Θ̃[m](G,λ),λ),

where for any L = {` j, 1≤ ` j ≤ L : 0= `0 < `1 < . . .< `L < `L+1 = n},

RSS0(L ,λ)=
L∑

j=0

∑
t∈J0∩

{` j+1,...,` j+1}

(
Yt −x>

t β̂
(1)
j (L ,λ)

)2
.

Here, β̂(1)
j (L ,λ) denotes the Lasso estimator obtained using (Yt,xt), t ∈J1∩ {` j, . . . ,` j+1} with the

penalty parameter λ. Then for each Gh ∈G , we find

(λ∗,m∗)= argmin (λ,m):λ∈Λ,
0≤m≤q̃0(Gh,λ)

CV(Gh,λ,m)

and obtain the set of pre-estimators Θ̃(Gh) = Θ̃[m∗](Gh,λ∗) using λ∗ and m∗. This amounts to

selecting the bandwidth-dependent threshold D at a value just below the m∗th largest MOSUM

detector value. Such Θ̃(Gh), Gh ∈G , serve as an input to Steps 2–4 of MOSEG.MS. In all numerical

experiments reported in this chapter, we set |Λ| = 5.

Selection of other tuning parameters. For change point estimation, we recommend to use

η= 0.5 in (3.7) based on extensive simulations, which show that the performance of MOSEG and

MOSEG.MS is not too sensitive to its choice. As noted in Section 3.4.2, MOSEG.MS is highly

competitive computationally against the existing methods even without adopting a coarse grid.

Therefore, we report the results obtained with r = G−1 (i.e. T = {G, . . . ,n−G} in (3.6) ) in the

main text and provide the results obtained with r = 1/10 in Section 3.5.1, where we observe that

adopting a coarse grid does not undermine the performance of MOSEG.
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3.4.2 Computational complexity and run time

Recall that Lasso(p) denotes the cost of solving a Lasso problem with p variables. For the

coordinate descent algorithm (Friedman et al., 2010), each complete iteration of the coordi-

nate descent has the cost O(p2). Then, the combined computational cost of Stages 1 and 2

of MOSEG is O(n(rG)−1Lasso(p)), and the memory cost is O(np). Similarly, with the set of

bandwidths generated as described in Remark 3.2, the complexity of the multiscale extension

MOSEG.MS is O(n(rG1)−1Lasso(p)) with G1 denoting the finest scale, which follows from that∑H
h=1 n/(rGh)≤ n/(rG1)

∑∞
h=1 F−1

h = O(n(rG1)−1) (see Remark 3.2 for the notations). The CV out-

lined in Section 3.4.1, we generate pre-estimators and evaluate the CV objective function on

a sequence of nested models for each λ ∈Λ, which brings the computational complexity of the

complete MOSEG.MS methodology to O(|Λ|n(rG1)−1Lasso(p)).

We investigate the run time of change point detection methodologies for the problem in (3.1).
1 MOSEG (with G = bn/6c) and MOSEG.MS are applied with the tuning parameters chosen as

in Section 3.4.1 and the finest grid (i.e. T = {G, . . . ,n−G}), and we include the CV procedure in

run time. For comparison, we consider VPWBS (Wang et al., 2021a), DPDU (Xu et al., 2022) and

ARBSEG (Kaul et al., 2019a) applied with the recommended tuning parameters. In particular,

VPWBS and DPDU adopt a grid of size 3 for the Lasso tuning parameter while we use the

set Λ with |Λ| = 5. We generate the data as described in the model (M3) in Section 3.4.3 below,

with δ= 1.6 and varying (n, p). Figure 3.1 reports the average execution time (in seconds) over

100 realisations for each setting, for the five methods in consideration. In the left panel, we

fix n = 450 while varying p ∈ {80,100, . . . ,220} and in the right, we fix p = 100 while varying

n ∈ {240,300, . . . ,660}. Both MOSEG and MOSEG.MS take only a fraction of time taken by the

competing methodologies in their computation even without the use of the coarse grid, and their

run time does not vary much with increasing n or p in the ranges considered. As expected,

MOSEG is faster than MOSEG.MS but the difference in execution time is much smaller than

that between MOSEG.MS and other competitors.

3.4.3 Simulation settings

We apply MOSEG.MS to datasets simulated with varying (n, p,s) and change point configurations.

In each setting, we generate xt as i.i.d. Gaussian random vectors with mean 0 and the covariance

matrix Σx which are specified below, and εt ∼iid N (0,σ2
ε); unless specified otherwise, we use

σε = 1. We report the results from non-Gaussian and serially dependent data in Section 3.5.2

where overall, the results are not sensitive to tail behaviour or temporal dependence. While we

consider p ≥ 100 in the main text, we report the results when p = 1000 in Section 3.5.3 which,

together with Section 3.4.2, demonstrate the scalability of MOSEG.MS.

1All numerical work reported in this chapter was carried out using the computational facilities of the Advanced
Computing Research Centre at the University of Bristol.
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The models (M1)–(M3) below are taken from Wang et al. (2021a); in (M2), we adapt their

model by randomly generating the set S on each realisation while in (M3), we consider a broader

range of values for δ. In what follows, we assume that for given S ⊂ {1, . . . , p} with |S | = s, the

parameter vector β0 = (β0,1, . . . ,β0,p)> ∈Rp has β0,i 6= 0 for i ∈S and β0,i = 0 otherwise, i.e. S is

the support of β0. For each setting, we generate 100 realisations.

(M1) Setting p = 100, q = 3 and Σx = I, we vary n ∈ {480,560,640,720,800} and the change points

are located at θ j = jn/4, j = 1,2,3. Fixing S = {1, . . . ,s} with s= 4, we set β0,i = 0.4 · (−1)i−1

for i ∈S and β j = (−1) j ·β0.

(M2) We set n = 300, p = 100 and q = 2, and Σx = [0.6|i−i′|]p
i,i′=1. The change points are located

at θ j = jn/3, j = 1,2, and we vary s ∈ {10,20,30}. For each realisation, we randomly draw

S ⊂ {1, . . . , p} of size s, and set β0,i = 1/
p

4s for i ∈S , β j = (−1) j ·β0.

(M3) We have n = 300, p = 100, q = 2, s = 10 and Σx = [0.6|i−i′|]p
i,i′=1. The change points are

located at θ j = jn/3 and fixing S = {1, . . . ,s}, we set β0,i = δ · (−1)i−1 for i ∈S with varying

δ ∈ {0.2,0.4,0.8,1.6}/
p
s , and β j = (−1) j ·β0.

(M4) We set n = 840, p = 50, q = 5, s= 10 and Σx = I. The change points are located at θ1 = 60,

θ2 = 120, θ3 = 240, θ4 = 360 and θ5 = 600 and fixing S = {1, . . . ,s}, we set β0,i = δ · (−1)i−1 for

i ∈S with varying δ ∈ {0.2,0.4,0.8,1.6}/
p
s , and β1 =−β2 =−2β0, β3 =−β4 =−p2β0 and

β5 =−β6 =−β0.

(M5) The data is generated as in (M3) except for that q = 0, Σx = [102 ·0.6|i−i′|]p
i,i′=1 and σε = 10,

and we use δ ∈ {1,1.2,1.4,1.6}.

In setting (M4), the change points are multiscale in the sense that the size of change and

spacing between the change points vary, but δ2
j ·min(θ j+1 − θ j,θ j − θ j−1) is kept constant for

j = 1,3,5 and j = 2,4, respectively. This results in ∆(1) in (3.11) being much smaller than ∆(2)

in (3.18). (M5) is designed to test the performance of data segmentation methods when q = 0,

where we scale the data to examine the sensitivity of the tuning parameter choices discussed in

Section 3.4.1.

3.4.4 Simulation results

We apply MOSEG.MS with the tuning parameters selected as described in Section 6.3. For the

purpose of illustration only, we also apply MOSEG with the bandwidth chosen with the knowledge

of the minimum spacing between the change points; for (M1)–(M3) where change points are

evenly spaced, we set G = 3/4 ·min0≤ j≤q(θ j+1 −θ j). For (M4) with multiscale change points, there

does not exist a single bandwidth that works well in detecting all change points so we simply set

G = 125. For (M5) with q = 0, we set G =G1 selected as described in Section 6.3. For comparison,

we apply the methods proposed by Wang et al. (2021a) (referred to as VPWBS) and Xu et al.
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(2022) (DPDU). The VPWBS method learns the projections well-suited for the detection of the

change points and applies the wild binary segmentation algorithm to the projected univariate

series, and has been shown to outperform the methods proposed in Leonardi and Bühlmann

(2016) and Lee et al. (2016). Based on dynamic programming, the DPDU algorithm minimises the

`0-penalised cost function for multiple change point detection. Both methods have been applied

with the default tuning parameters recommended by the authors. We also considered the method

proposed by Kaul et al. (2019a) but omit the results due to its poor performance on the simulation

models considered here.

In Tables 3.2–3.5, we report the distribution of the bias in change point number estimation

(q̂− q) for each method over the 100 realisations generated under each setting. Additionally, we

report the scaled Hausdorff distance between the sets of estimated (Θ̂) and true (Θ) change points,

i.e.

dH(Θ̂,Θ)= 1
n

max
{

max
θ̂∈Θ̂

min
θ∈Θ

|θ̂−θ|,max
θ∈Θ

min
θ̂∈Θ̂

|θ̂−θ|
}

, (3.20)

averaged over 100 realisations; by convention, we set dH(;,Θ)= 1. We remark that the Hausdorff

distance tends to favour the cases when the change points are over-detected, than when they are

under-detected. In Table 3.6 (considering the case q = 0), we report the proportion of realisations

where any false positive is returned.

Generally, as expected, we observe better performance from all methods with increasing

sample size in (M1) or increasing change size with δ in (M3)–(M4) while varying the sparsity level

s brings in less clear change in the performance. In the presence of homogeneous change points

under (M1)–(M3), MOSEG performs as well as MOSEG.MS in terms of correctly estimating the

number of change points, but it suffers from the lack of adaptivity in the presence of multiscale

change points under (M4) where both large frequent shifts and small changes over long intervals

are present. Here, we observe the benefit of the multiscale approach taken by MOSEG.MS

particularly as δ grows, where it achieves better accuracy in detection and localisation against

MOSEG. Comparing the performance of MOSEG.MS and VPWBS, we note that the former

generally attains better detection power while the latter exhibits better localisation properties

under (M2) and (M3) (when δ is large). DPDU tends to show good detection power in the more

challenging scenarios, such as when n is small (under (M1)), s is large (under (M2)) or the change

size is small (see Table 3.8). At the same time, it is observed to over-estimate the number of

change points across all scenarios.

Under (M5), where no changes are present, our methods are shown to control the number of

false positives well. Here, we do not include VPWBS or DPDU in Table 3.6 as they tend to detect

false positives in most cases.
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Table 3.2: (M1) Performance of MOSEG, MOSEG.MS, VPWBS and DPDU over 100 realisations. The best
performer in each setting is denoted in bold.

q̂− q
n Method −3 −2 −1 0 1 2 ≥ 3 dH

480 MOSEG 3 3 6 81 7 0 0 0.0852
MOSEG.MS 1 6 7 84 2 0 0 0.0710

VPWBS 1 3 14 58 16 5 3 0.0795
DPDU 0 0 3 80 13 4 0 0.0405

560 MOSEG 2 3 5 72 17 1 0 0.0742
MOSEG.MS 0 1 5 93 1 0 0 0.0299

VPWBS 1 0 10 73 5 8 3 0.0579
DPDU 3 0 1 79 15 2 1 0.0660

640 MOSEG 1 3 5 64 23 4 0 0.0652
MOSEG.MS 0 1 2 91 6 0 0 0.0203

VPWBS 0 1 3 89 3 2 2 0.0291
DPDU 0 0 0 77 18 5 1 0.0344

720 MOSEG 1 3 1 76 18 1 0 0.0433
MOSEG.MS 0 0 0 97 3 0 0 0.0104

VPWBS 0 0 1 92 3 3 1 0.0190
DPDU 1 0 0 75 22 2 0 0.0390

800 MOSEG 2 3 7 61 25 2 0 0.0753
MOSEG.MS 0 0 0 100 0 0 0 0.0073

VPWBS 0 0 2 92 3 2 1 0.0202
DPDU 0 0 0 68 25 7 0 0.0385

Table 3.3: (M2) Performance of MOSEG, MOSEG.MS, VPWBS and DPDU over 100 realisations. The best
performer in each setting is denoted in bold.

q̂− q
s Method −2 −1 0 1 2 ≥ 3 dH

10 MOSEG 27 28 35 10 0 0 0.4204
MOSEG.MS 11 32 44 13 0 0 0.3117

VPWBS 45 17 11 9 15 3 0.2465
DPDU 55 5 33 7 0 0 0.5981

20 MOSEG 14 31 50 5 0 0 0.3016
MOSEG.MS 8 32 48 12 0 0 0.2726

VPWBS 44 13 18 13 9 3 0.2302
DPDU 49 3 45 3 0 0 0.5300

30 MOSEG 14 25 50 11 0 0 0.2765
MOSEG.MS 11 30 41 18 0 0 0.2848

VPWBS 24 20 33 9 9 5 0.1843
DPDU 26 9 51 14 0 0 0.3294

3.5 Additional simulations

3.5.1 Choice of the grid

We investigate the performance of MOSEG as the coarseness of the grid varies with r ∈
{1/3,1/5,1/10,1/G}. Recall that when r = 1/G, we use the full grid T = {G, . . . ,n−G} in Stage 1
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Table 3.4: (M3) Performance of MOSEG, MOSEG.MS, VPWBS and DPDU over 100 realisations. The best
performer in each setting is denoted in bold.

q̂− qp
10δ Method −2 −1 0 1 2 ≥ 3 dH

0.2 MOSEG 12 19 63 6 0 0 0.2367
MOSEG.MS 4 16 64 15 1 0 0.1609

VPWBS 77 9 5 6 1 2 0.3025
DPDU 4 4 36 24 17 15 0.1779

0.4 MOSEG 7 9 81 3 0 0 0.1401
MOSEG.MS 3 21 71 5 0 0 0.1488

VPWBS 53 20 12 8 4 3 0.2681
DPDU 0 0 21 23 34 22 0.1498

0.8 MOSEG 6 10 82 2 0 0 0.1242
MOSEG.MS 2 14 77 6 1 0 0.1099

VPWBS 13 7 58 14 6 2 0.1061
DPDU 0 0 11 29 19 41 0.1644

1.6 MOSEG 3 5 91 1 0 0 0.0732
MOSEG.MS 0 10 88 2 0 0 0.0737

VPWBS 1 1 84 10 4 0 0.0404
DPDU 0 0 14 12 25 49 0.1682

Table 3.5: (M4) Performance of MOSEG, MOSEG.MS, VPWBS and DPDU over 100 realisations. The best
performer in each setting is denoted in bold.

q̂− qp
10δ Method −3 −2 −1 0 1 2 ≥ 3 dH

0.2 MOSEG 45 6 4 5 21 9 10 0.4518
MOSEG.MS 17 9 19 12 15 8 20 0.2263

VPWBS 95 1 2 1 1 0 0 0.4073
DPDU 99 0 0 0 1 0 0 0.9578

0.4 MOSEG 44 7 10 10 8 5 16 0.4347
MOSEG.MS 15 12 16 17 7 16 17 0.2015

VPWBS 73 2 7 6 7 5 0 0.3247
DPDU 80 5 3 5 5 2 2 0.7317

0.8 MOSEG 4 23 31 27 9 5 1 0.1978
MOSEG.MS 0 3 34 38 15 9 1 0.0834

VPWBS 13 40 29 11 4 2 1 0.1165
DPDU 0 0 0 43 36 21 8 0.0629

1.6 MOSEG 0 7 45 43 3 2 0 0.0970
MOSEG.MS 0 1 32 59 7 1 0 0.0387

VPWBS 3 35 38 19 1 3 1 0.0900
DPDU 0 0 0 54 32 14 5 0.0444

of MOSEG, see (3.6). For this, we set n = 300, p = 100, s = 2 and q = 1, and generate the data

under (3.1) with xt ∼iid Np(0,I) and εt ∼iid N (0,1). For each realisation, the change point θ1 is ran-

domly sampled from {51, . . . ,250}. Varying δ ∈ {0.1,0.2,0.4,0.8}, we generate β0 = (β0,1, . . . ,β0,p)>

with β0,i = δ · (−1)i−1 for i ∈ {1, . . . ,s} and have β1 =−β0. Setting G = 50, we select the maximiser

of the MOSUM statistic as the pre-estimator θ̃1 in Stage 1 of MOSEG, which then is refined
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Table 3.6: (M5) Proportions of detecting false positives when q = 0 for MOSEG and MOSEG.MS over 100
realisations.

δ

Method 1 1.2 1.4 1.6

MOSEG 0.05 0.01 0.01 0.02
MOSEG.MS 0.04 0.01 0.01 0.02

as in (3.10) in Stage 2. Table 3.7 reports the average and the standard error of n−1|θ̃1 −θ1| and

n−1|θ̂1 −θ1| over 100 realisations when different grids are used. See also Figure 3.4 which plots

the Hausdorff distance dH (see (3.20)) against r. When the size of change is very small, estimators

from both Stages 1 and 2 perform equally poorly regardless of the choice of r. However, as δ

increases, we quickly observe that the estimation error becomes close to zero for the estimators

from both stages provided that r is not too large. Also, for δ ≥ 0.2, we observe that Stage 2

brings in small improvement in the localisation performance. From this, we conclude that the

performance of MOSEG is robust to the choice of r provided that it is chosen reasonably small,

say r ≤ 1/5.

Table 3.7: Comparison of Hausdorff distance dH for Stage 1 and Stage 2 estimators from MOSEG when
different grids are used. The average and the standard error of estimation errors over 100 realisations are
reported.

r =G−1 r = 1/10

Stage 1 Stage 2 Stage 1 Stage 2
δ Mean SD Mean SD Mean SD Mean SD

0.1 0.2043 0.1561 0.2099 0.1670 0.2003 0.1525 0.2096 0.1683
0.2 0.1194 0.1367 0.1149 0.1442 0.1302 0.1402 0.1296 0.1549
0.4 0.0089 0.0104 0.0038 0.0053 0.0115 0.0179 0.0039 0.0050
0.8 0.0070 0.0089 0.0022 0.0052 0.0086 0.0096 0.0020 0.0049

r = 1/5 r = 1/3

Stage 1 Stage 2 Stage 1 Stage 2
δ Mean SD Mean SD Mean SD Mean SD

0.1 0.2142 0.1525 0.2232 0.1683 0.2179 0.1525 0.2255 0.1683
0.2 0.1383 0.1402 0.1349 0.1549 0.2165 0.1402 0.2061 0.1549
0.4 0.0142 0.0179 0.0039 0.0050 0.2696 0.0179 0.2359 0.0050
0.8 0.0126 0.0096 0.0016 0.0049 0.2303 0.0096 0.1929 0.0049

3.5.2 Heavy-tailedness and temporal dependence

We examine the performance of MOSEG.MS, VPWBS (Wang et al., 2021a), and DPDU (Xu et al.,

2022) in the presence of heavy-tailed noise and temporal dependence. For this, we generate

datasets with n = 300, p = 100, s= 10, q = 1 and the two change points are located at θ j = jn/3,

j = 1,2. We use β0 obtained as in Section 3.5.1 with δ ∈ {0.2,0.4,0.8,1.6} and set β j = (−1) j ·β0.
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Figure 3.4: Hausdorff distance dH against r for Stage 1 (solid line) and Stage 2 (dashed line) estimators
from MOSEG, as the size of changes varies.

MOSEG.MS is applied with the recommended bandwidth set and the CV-based model selection

discussed in Section 3.4.1. We consider the following three settings for the generation of xt and

εt.

(E1) xt ∼iid Np(0,I) and εt ∼iid N (0,1) for all t.

(E2) X it ∼iid
p

3/5 · t5 for all i and t and εt ∼iid
p

3/5 · t5 for all t.

(E3) {(xt,εt)}n
t=1 is generated as in (3.13) where D1 is a diagonal matrix with 0.3 on its diagonals,

D` =O for `≥ 2 and ζt ∼iid Np+1(0,
p

1−0.32 I) for all t.

Under (E2)–(E3), the data is permitted to be heavy-tailed and serially correlated, respectively;

(E1) serves as a benchmark. Table 3.8 reports the average and standard error of the Hausdorff

distance in (3.20) and q̂− q over 100 realisations. It shows that generally, neither method is sen-

sitive to heavy-tailedness or temporal dependence. VPWBS shows good localisation performance,

while MOSEG.MS tends to achieve better detection accuracy when the size of change is small.

DPDU performs very well in the more challenging setting with small δ. However, as noted in

Section 3.4, it is more prone to over-estimate the number of change points as δ increases with

which the localisation performance also deteriorates.

3.5.3 When the dimensionality is large

We additionally examine the case where p = 1000, adopting the simulation setting (E1) from

Section 3.5.2. We exclude VPWBS Wang et al. (2021a) which, as shown in Section 3.4.2, tends

to take considerably longer time to run compared to MOSEG.MS. Table 3.9 shows that, in

comparison to the the results under (E1) in Table 3.8 obtained when p = 100, the greater sample
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Table 3.8: Performance of MOSEG.MS and VPWBS under (E1)–(E3) over 100 realisations. The best
performer in each setting is denoted in bold.

q̂− q
δ Setting Method −2 −1 0 1 2 ≥ 3 dH

0.2 (E1) MOSEG.MS 10 35 46 9 0 0 0.2905
VPWBS 56 10 9 14 9 2 0.2583
DPDU 0 0 86 12 1 1 0.0239

(E2) MOSEG.MS 6 53 34 6 1 0 0.2779
VPWBS 60 10 7 13 10 0 0.2663
DPDU 0 0 89 11 0 0 0.0168

(E3) MOSEG.MS 8 30 44 17 1 0 0.2644
VPWBS 10 15 18 13 28 16 0.1671
DPDU 0 0 85 13 2 0 0.0211

0.4 (E1) MOSEG.MS 0 9 86 4 1 0 0.0766
VPWBS 1 3 87 7 2 0 0.0361
DPDU 0 0 82 16 1 1 0.0240

(E2) MOSEG.MS 1 11 83 5 0 0 0.0830
VPWBS 1 7 83 4 5 0 0.0567
DPDU 0 0 82 16 2 0 0.0248

(E3) MOSEG.MS 1 9 81 9 0 0 0.0678
VPWBS 0 1 80 14 4 1 0.0397
DPDU 0 0 71 24 5 0 0.0359

0.8 (E1) MOSEG.MS 0 0 99 1 0 0 0.0119
VPWBS 0 0 97 3 0 0 0.0095
DPDU 0 0 81 18 1 0 0.0227

(E2) MOSEG.MS 0 0 98 2 0 0 0.0100
VPWBS 0 0 98 2 0 0 0.0104
DPDU 0 0 80 17 1 2 0.0209

(E3) MOSEG.MS 0 1 96 3 0 0 0.0153
VPWBS 0 0 98 2 0 0 0.0103
DPDU 0 0 73 24 3 0 0.0285

1.6 (E1) MOSEG.MS 0 0 97 3 0 0 0.0097
VPWBS 0 0 100 0 0 0 0.0037
DPDU 0 0 75 22 1 2 0.0309

(E2) MOSEG.MS 0 0 100 0 0 0 0.0036
VPWBS 0 0 100 0 0 0 0.0033
DPDU 0 0 78 18 1 3 0.0249

(E3) MOSEG.MS 0 1 96 3 0 0 0.0076
VPWBS 0 0 99 1 0 0 0.0045
DPDU 0 0 69 24 6 1 0.0307

size is required to detect smaller changes. Also, the localisation performance worsens as p

increases. Nonetheless, MOSEG.MS demonstrates itself to be scalable as the dimensionality

increases when the size of change is sufficiently large, which is in line with the theoretical

requirements.
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Table 3.9: Performance of MOSEG.MS under (E1) when p= 1000 over 100 realisations.

q̂− q
δ −2 −1 0 1 2 ≥ 3 dH

0.2 6 47 29 18 0 0 0.3051
0.4 10 34 44 11 1 0 0.2972
0.8 1 22 65 11 1 0 0.1391
1.6 4 3 92 1 0 0 0.0673

3.6 Real data application

There exists an extensive literature on the prediction of the equity premium, which is defined

as the difference between the compounded return on the S&P 500 index and the three month

Treasury bill rate. Using 14 macroeconomic and financial variables (see Table A.2.1 for full

descriptions), Welch and Goyal (2008) demonstrate the difficulty of this prediction problem, in

part due to the time-varying nature of the data. Koo et al. (2020) note that the majority of the

variables are highly persistent with strong, positive autocorrelations, and develop an `1-penalised

regression method that identifies co-integration relationships among the variables. Accordingly,

we transform the data by taking the first difference of any variable labelled as being persistent

by Koo et al. (2020), and scale each covariate series to have unit standard deviation. With the

thus-transformed variables, we propose to model the monthly equity premium observed from

1927 to 2005 as Yt, with the 14 variables at lags 1,2,3 and 12 as regressors xt via piecewise

stationary linear regression; in total, we have n = 936 and p = 57 including the intercept.

We apply MOSEG.MS with G = {72,96,120} in line with the choice described in Section 3.4.1

but we select Gh to be multiples of 12 for interpretability as the observation frequency is monthly.

MOSEG.MS returns q̂ = 7 change point estimators reported in Table 3.10, and takes 45 seconds

in total (including CV). When applied to the same dataset, DPDU takes 25 minutes and VPWBS

takes 15 minutes, and neither detects any change point. In Figure 3.5, we plot the local parameter

estimates obtained from each of the seven estimated segments. We can relate the change detected

in 1954 to the findings reported in Rapach et al. (2010), where they attribute the instability in the

pairwise relationships between the equity premium and each of the 14 variables to the Treasury-

Federal Reserve Accord and the transition from the wartime economy. Dividend price ratio (d/p,

at lag two) is active throughout the observation period which agrees with the observations made

in Welch and Goyal (2008). They also remark that the recession from 1973 to 1975 due to the

Oil Shock drives the good predictive performance of many models proposed for equity premium

forecasting, and most perform poorly over the 30 year period (1975–2005) following the Oil Shock.

The two last segments defined by the change point estimators reported in Table 3.10 are closely

located with these important periods, which supports the validity of the segmentation returned

by MOSEG.MS. We note that regardless of the choice of bandwidths, both of the two estimators

in 1974 and 1975 defining the two periods are detected separately.
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Figure 3.5: Equity premium data: Parameter estimates from each estimated segment obtained by
MOSEG.MS. Variables at different lags are coloured differently in the y-axis.

Table 3.10: Equity premium data: Change point estimators detected by MOSEG.MS.

Estimator θ̂1 θ̂2 θ̂3 θ̂4 θ̂5 θ̂6 θ̂7

Date Oct 1935 Apr 1943 Aug 1951 Nov 1954 Nov 1958 May 1974 Aug 1975

3.7 Conclusions

In this chapter, we propose MOSEG, a high-dimensional data segmentation methodology for

detecting multiple changes in the parameters under a linear regression model. It proceeds in

two steps, first scanning the data for large changes in local parameter estimators over a moving

window, followed by a computational efficient location refinement step. We further propose its

multiscale extension, MOSEG.MS, which alleviates the necessity to select a single bandwidth.

Both numerically and theoretically, we demonstrate the efficiency of the proposed methodologies.

Computationally, they are highly competitive thanks to the careful design of the algorithms that

limit the required number of Lasso estimators. theoretically, we show the consistency of MOSEG

and MOSEG.MS in a general setting permitting serial dependence and heavy tails and establish

their (near-)minimax optimality under Gaussianity. In particular, the consistency of MOSEG.MS

is derived for a parameter space that simultaneously permits large changes over short intervals

and small changes over long stretches of stationarity, which is much broader than that typically

adopted in the literature. Comparative simulation studies and findings from the application of

MOSEG.MS to equity premium data support its efficacy.
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4
MOVING SUM DATA SEGMENTATION FOR VECTOR

AUTOREGRESSIVE TIME SERIES

4.1 Introduction

T ime series data are often sampled in settings which are, by their nature, non-stationary.

Settings studied in the literature include genomics (Olshen et al., 2004), macroeconomics

(Stock and Watson, 1996), finance (Koo and Seo, 2015; Nasiadka et al., 2022), neuroscience

(Bai et al., 2021), and remote sensing (Palm et al., 2018; Verbesselt et al., 2010). A simple way

to account for changing model behaviour is to allow the model to vary in a piecewise constant

manner between unknown change points; to estimate the number and locations of these is the

problem of change point analysis, or data segmentation. See Niu et al. (2016) and Cho and Kirch

(2021a) for reviews.

Real time series data tend to exhibit dependence in time and space, so it is of interest to

identify changes in the second-order structure, such as the covariance (Aue et al., 2009) or

dependence properties (Cho and Fryzlewicz, 2015). Vector autoregressive (VAR) models are

popular parametric models for multiple time series, which capture linear dynamics. These are

simple to interpret, estimate, and forecast from. Under stationarity assumptions they may

used, for example, in biology for learning causal networks (Opgen-Rhein and Strimmer, 2007),

in finance for forecasting (Ang and Piazzesi, 2003; Barigozzi et al., 2023), or in economics for

impulse response analysis (Stock and Watson, 2001).

Testing for the presence of a single change point under a VAR model has been considered

in many papers; Dvořák and Prášková (2013) and Dvořák (2017) use Wald-type statistics, and

Kirch et al. (2015) use score statistics. In the multiple change setting, Bai (2000) uses a penalised

likelihood approach for estimation, which is generalised by Qu and Perron (2007) to offer a range
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of tests; the dynamic programming algorithm used for estimation incurs a cost which is quadratic

in the length of the series (Bai and Perron, 2003). Other approaches include Bayesian methods

(Ahelegbey et al., 2021) and regularised estimation (Li et al., 2020), where the low-dimensional

problem is cast as solving a single high-dimensional regression problem. We briefly mention

methods designed for the high-dimensional asymptotic setting where the number of series is

allowed to grow with respect to the sample size, often under sparsity (Cho and Owens, 2022;

Safikhani and Shojaie, 2022), low-rank (Enikeeva et al., 2023), or both (Bai et al., 2020b, 2023)

assumptions on VAR parameter matrices. We also mention methods for univariate autoregressive

series (Davis et al., 1995, 2006; Gombay, 2008; Gombay and Serban, 2009). See Section 2.1.2 for

further discussion.

This chapter proposes a method which contrasts functions of the data on a G-sized moving

window either side of a candidate change point k ∈ {G,G +1, . . . ,n−G}. Other moving window

approaches have been used in, for example, Bauer and Hackl (1980); Cho and Owens (2022);

Eichinger and Kirch (2018); Hušková (1990); McGonigle and Cho (2023); Preuss et al. (2015b);

Yau and Zhao (2016). Kirch and Reckrühm (2022) propose a general moving sum (MOSUM)

procedure based on estimating function. We adapt their moving window-based approach to change

point detection under a time-varying VAR model. Their work develops a general framework for

change point detection under generic estimating functions, providing theoretical guarantees for

consistency of the estimating procedure.

We highlight the following contributions made in this work, in particular relatively to Kirch

and Reckrühm (2022).

(i) Multiple change points in a piecewise stationary VAR model. We show that our

method consistently estimates the number and locations (if any) of the change points,

matching the best localisation rates available in the literature. We provide asymptotic

guarantees for family-wise error control when no changes are present, and for consistency

of detection when they are.

(ii) Computational efficiency. By scanning over a coarse grid T ⊂ {1, . . . ,n} we greatly reduce

the number of times we must obtain parameter estimates, reducing the complexity to be

sub-linear in the sample size. We then perform a cheap localisation step to obtain accurate

estimators. For all the methods we propose, a C++ implementation is available that may be

called in R.

(iii) Algorithmic extensions. We devise a range of extensions to the procedure, some of which

apply to generic moving sum procedures. A multiple-bandwidth algorithm allows detection

in the multiscale setting, where we have both large frequent and small infrequent changes

in the same sample. Furthermore, we devise a recursive segmentation strategy to detect

changes which are not detectable under a global inspection parameter. Specifically for the
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VAR setting, we propose dimension reduction methods and a parametric bootstrap for the

analysis of larger panels.

The Chapter is organised as follows: In Section 4.2 we introduce a piecewise stationary VAR

model. In Section 4.3, we propose a moving window procedure with a score-type detector for data

segmentation. We define estimators, prove these procedures have asymptotic size control and

power 1, and give estimation guarantees for the number and locations of changes. In Section 4.4

we extend the procedure with data-adaptive algorithms, making changes detectable under a

less stringent condition on the jump size, and allowing for multiscale changes. We make further

proposals in Section 4.5 to address computational issues, scanning over a coarse grid to reduce

cost and using projections to estimate models with many parameters. We validate our methods

numerically in Section 4.6 with in-depth simulation studies and two applications to real datasets

on air quality measurements and macroeconomic series.

Notation Let R, Z, and N denote the sets of real numbers, integers and natural numbers. We

let O and 0 be a matrix and vector of zeros, respectively, and I p be the p× p identity matrix. Let

‖·‖ denote the Euclidean norm of a vector or the Spectral norm of a matrix, and let ‖·‖F denote

the Frobenius norm. We denote the Kronecker product of two matrices A = [ai j] ∈Rm×n and B, by

A⊗B =


a11B a12B . . . a1nB

a21B a22B
...

...
. . .

am1B . . . amnB

 .

For a sequence of random variables {Xn}n∈N, let Xn
D→ X and Xn

P→ X denote convergence in

distribution and probability, respectively. We denote by Γ the Gamma function.

4.2 Piecewise stationary VAR model

We observe {X t}n
t=1 consisting of time-ordered vectors X t = (X1t, X2t, . . . , X pt)> ∈Rp, which follow

a piecewise stationary VAR model

X t =


X (1)

t , k0 +1= 1≤ t ≤ k1,

X (2)
t , k1 +1≤ t ≤ k2,

...

X (q+1)
t , kq +1≤ t ≤ kq+1 = n,

(4.1)
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where each {X ( j)
t }t∈Z is a stationary VAR(d) process (in the sense of (2.4), or Equation (2.1.9) of

Lütkepohl (2005)), i.e.

X ( j)
t = a jX

( j)
t−1 +εt, where a j =


a j(1)>

...

a j(p)>

 ∈Rp×(dp+1) and X
( j)
t−1 =


1

X
( j)
1,t−1
...

X
( j)
p,t−1

 ∈Rdp+1

for j = 1, . . . , q+1. Here, X( j)
i,t−1 = (X ( j)

i,t−1, . . . , X ( j)
i,t−d)> collects the d lagged values of X ( j)

it , the i-th

channel of X ( j)
t , and a j(i) collects the parameters involved in predicting the i-th channel. There

are q change points at unknown locations k j, 1≤ j ≤ q, such that a j 6= a j+1 for all j. We assume

that k j = bλ jnc for 0 = λ0 < λ1 < . . . ,λq < λq+1 = 1, with q treated as being fixed. Our aim is to

estimate the total number and the locations of the q change points. We require {εt}n
t=1 to be a

zero-mean, independent process such that IE(εt)= 0, Cov(εt)= S for some positive definite matrix

S ∈Rp×p, and Cov(εt,εt′)=O for any t 6= t′. We might allow the innovation covariance matrix S
to vary from one segment to another, but our focus is on detecting changes due to shifts in the

VAR parameters a j.

4.3 Data segmentation methodology

4.3.1 Moving sum procedure

We introduce a score-type statistic computed on a moving window for detecting changes under

the model (4.1). Referred to as a MOSUM score statistic, the detector statistic is adopted in Kirch

and Reckrühm (2022) for multiple change point detection in general data segmentation problems,

which we apply here to the piecewise stationary VAR process. This scans for large discrepancies

in the moving sums of the estimating function for the method of least squares. We begin by

specifying the estimating function

H t(ã)= H (X t,Xt−1, ã)=− (X t − ãXt−1)⊗Xt−1 ∈Rp(dp+1) (4.2)

which corresponds to the least squares objective. We let ã be an inspection parameter which may

be data-dependent, i.e. one which we will "plug in" to the function in order to reveal changes. We

propose to scan the data with the statistic

T̂k(G, ã)= 1p
2G

∥∥∥(Σ̂k(ã))−1/2mk(G, ã)
∥∥∥ for k =G+d, . . . ,n−G, where (4.3)

mk(G, ã)=
k+G∑

t=k+1
H t(ã)−

k∑
t=k−G+1

H t(ã),

and Σ̂k(ã) estimates Σk(ã)=Σ( j)(ã)=Cov(H(X ( j)
1 ,X( j)

0 , ã)) for k ∈ {k j +1, . . . ,k j+1}. The proposed

detector statistic T̂k(G, ã) compares the scaled sums of the estimating function evaluated at the

inspection parameter ã. We discuss the estimation of Σk(ã) in Section 4.3.2.
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With the maximum detector statistic T̂(G, ã)=maxG≤k≤n−G T̂k(G, ã), we test the null hypoth-

esis of no change, H0 : q = 0, against the alternative H1 : q ≥ 1, as:

Reject H0 if T̂(G, ã)> D(G,α). (4.4)

Here, the critical value D(G,α) denotes the critical value derived from the asymptotic null

distribution of T̂(G, ã) at a given significance level α ∈ (0,1), see (4.11) below.

When H0 is rejected and there is evidence for one or more change points, our aim is to

estimate their number and locations. With an appropriately chosen ã, we expect T̂k(G, ã) to

take large values around the change points as illustrated in Figure 4.1. As such, we estimate k j

with the locations of significant local maximisers. To automatically identify these, we adopt a

criterion proposed in Eichinger and Kirch (2018). We consider all pairs of indices (v j,w j) that

simultaneously satisfy

T̂k(G, ã)> D(G,α) for v j ≤ k ≤ w j, and

T̂k(G, ã)≤ D(G,α) for k = v j −1,w j +1,
(4.5)

with w j −v j ≥ εG for some ε ∈ (0,1/2). We take the total number of these pairs as an estimator of

q:

q̂ = q̂(ã)= number of pairs (v j,w j),

and for each j = 1, . . . , q̂, we estimate the location of a change point by

k̂ j = k̂ j(ã)= argmaxv j≤k≤w j
T̂k(G, ã).

The criterion in (4.5) selects local maximisers of T̂k(G, ã), over intervals of length greater

than εG, as change point estimators. An alternative approach is to take any local maximiser of

T̂k(G, ã) over an interval of length proportional to G, at which the MOSUM statistic exceeds the

critical value. This criterion, referred to as the η-criterion in Meier et al. (2021), is shown to be

less conservative in comparison with ε-criterion; for further discussion, see Appendix B.4.

It remains to select an inspection parameter ã. Let âs,e be the unique solution satisfying∑e
t=s H t(âs,e)= 0 for any 1≤ s < e ≤ n with e−s+1≥ p(dp+1). This contains solutions to the least

squares problem for each channel, which is

âs,e(i)=
( e∑

t=s
X itX

>
t−1

)( e∑
t=s
Xt−1X

>
t−1

)−1

, i = 1, . . . , p. (4.6)

Kirch and Reckrühm (2022) suggest to adopt â1,n, the global parameter estimator, as the inspec-

tion parameter. This choice guarantees the family-wise error control under H0 : q = 0, but it may

lack power to detect some changes as discussed in Remark 4.1 below. In Section 4.4.1, we describe

an adaptation of the MOSUM procedure which adaptively selects the local parameter estimates

as the inspection parameter. An alternative approach is to directly compare local VAR parameter

estimates to scan for multiple change points. Referred to as the MOSUM Wald procedure, we

describe this method in Appendix B.1.
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Figure 4.1: Top: A realisation from a piecewise stationary bivariate VAR(1) model with changes at
k1 = 300 and k2 = 600 (denoted by vertical lines), where each series is differently coloured. Middle: The
time-varying VAR parameters in each regime. Bottom: MOSUM score statistic T̂k(G, ã), G ≤ k ≤ n−G with
G = 120 and the inspection parameter ã obtained as the global least squares estimator. The threshold
D(G,α) with α= 0.05 is denoted by the horizontal line and the change point estimators k̂1 and k̂2 by the
vertical lines.
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4.3.2 Estimation of Σk(ã)

We propose two estimators of Σk(ã). The first estimator is formed by combining an estimator for

C( j) =Cov(X( j)
t ) and that for S(ã)=Cov(ε̂t(ã)) where ε̂t(ã)= X t − ãXt−1, such that

Σ̂
(1)
k (ã)= Ŝk(ã)⊗ Ĉk−G+1,k+G . (4.7)

This choice is motivated by noting that, when ã= a1 and q = 0, we have that Xt and ε̂t = εt are

independent. Let the local estimator of Cov(Xt) be

Ĉs,e = 1
e− s+1

e∑
t=s
Xt−1X

>
t−1.

For an estimator of S(ã), we consider

Ŝk(ã)= 1
2G

( k∑
t=k−G+1

(
ε̂t(ã)− ε̄k−G+1,k(ã)

)(
ε̂t(ã)− ε̄k−G+1,k(ã)

)>
+

k+G∑
t=k+1

(
ε̂t(ã)− ε̄k+1,k+G(ã)

)(
ε̂t(ã)− ε̄k+1,k+G(ã)

)>)
, (4.8)

where ε̄s,e(ã)= 1
e− s+1

e∑
t=s
ε̂t(ã).

Alternatively, we estimate Σk(ã) directly by the sample covariance of H t(ã) locally with

Σ̂
(2)
k (ã)= 1

2G

[( k∑
t=k−G+1

(
H t(ã)− H̄k−G+1,k(ã)

)(
H t(ã)− H̄k−G+1,k(ã)

)>
+

k+G∑
t=k+1

(
H t(ã)− H̄k+1,k+G

)(
H t(ã)− H̄k+1,k+G(ã)

)>)]
,

where H̄s,e(ã)= 1
e− s+1

e∑
t=s

H t(ã). (4.9)

We demonstrate that these estimators are consistent in the sense of Assumption 4.7 in Ap-

pendix B.3.5.

4.3.3 Theoretical properties

In this section we show that under general conditions, the score procedure consistently estimates

the number and locations of changes. These results are consequences of the more general

framework developed in Kirch and Reckrühm (2022).

We begin by stating our modelling assumptions.

Assumption 4.1. The data are generated according to (4.1). Moreover, there exists ν̃> 0 such

that for each j = 1, . . . , q+1, it holds that 0 < IE‖X( j)
1 ‖4+ν̃ <∞, and Cov(X( j)

1 ) = C( j) is a positive

definite matrix.

Assumption 4.2. {εt}n
t=1 is a sequence of independent random vectors in Rp such that IE(εt)= 0,

and S = IE(εtε
>
t ) is a p× p nonsingular, symmetric, positive semi-definite matrix.
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Assumption 4.3. Let F e
s be the filtration of the sequence {X t}e

t=s. Defining

α(n)= sup
j∈N

sup
A∈F

j
1 ,B∈F∞

j+n

|P(A∩B)−P(A)P(B)|,

we let α(n)=O(n−b) for some b > 1+2/ν̃.

Assumption 4.1 requires that X( j)
t has at least four finite moments. By Lemma E.1 of Barigozzi

et al. (2023), this condition will hold if the moment condition is made on the innovation process, as

well a bound on ‖S‖, and that the VAR parameter permits a moving average representation with

absolutely summable coefficients. Assumption 4.2 states that the errors form an independent

process, which permits asymmetry and heavy tails. As a direct consequence of these conditions,

each series {H(X ( j)
t ,X( j)

t−1, ã)}n
t=1 has a positive definite covariance matrix Σ( j)(ã) = S(ã)⊗C( j).

Assumption 4.3 states that the observed series is strongly mixing at a rate which depends on the

number of moments of Xt.

Assumption 4.4. Let the bandwidth G depend on n, i.e. G =G(n).

(a) For ν̃> 0 assume that

n
G

→∞ and
n

2
2+ν̃ log(n)

G
→ 0 for n →∞.

(b) The minimum distance between change points is larger than 2G as n →∞, so that

lim inf
n→∞ min

j=1,...,q+1

k j −k j−1

G
> 2.

Assumption 4.5. Let ã be fixed. For j = 1, . . . , q, define the jump size δ j(ã)= ‖d j(ã)‖, where

d j(ã)= IE
(
H(X ( j+1)

t ,X( j+1)
t−1 , ã)

)− IE
(
H(X ( j)

t ,X( j)
t−1, ã)

)
. (4.10)

We let min1≤ j≤qδ j(ã)≥ cδ,n > 0, where cδ,n ·
√

G
log(n/G) →∞.

Assumption 4.4 requires that the bandwidth for the MOSUM procedure grows with respect

to the sample size and inversely to the number of moments, and guarantees that, asymptotically,

a detector at any k =G, . . . ,n−G draws observations from at most two segments. Assumption 4.5

allows the size of each jump to tend to zero.

Remark 4.1 (Detectability). Changes can only be detected by the score procedure (using the

inspection parameter ã) when a change in the expectation of the estimating function occurs,

i.e. δ j(ã)≥ cδ,n as per Assumption 4.5. We can contrive examples where this is not the case, e.g.

a j 6= a j+1 but

d j(ã)= (ã−a j+1)C( j+1) − (ã−a j)C( j) = 0,
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so δ j(ã)= 0. For example, in the univariate case this is solved with the inspection parameter

ã =
(

1
1−a2

j+1
− 1

1−a2
j

)−1 (
a j+1

1−a2
j+1

− a j

1−a2
j

)
.

If we use ã= a1,n, the weighted average of a j, j = 1, . . . , q+1 defined in (4.12), by Lemma B.11

it holds that δ j(ã)> 0 for at least one j ∈ {1, . . . , q}. In practice, we may use ã= â1,n in (4.6), which

by Lemma B.9 is
p

n -consistent for a1,n. This motivates the data-adaptive extension proposed in

Section 4.4.1, which allows for the detection of a broader class of changes with a relaxed condition

on the jump size.

Assumption 4.6. Define cα =− loglog(1−α)−1/2, which is the (1−α) quantile of the Gumbel type

2 distribution. Let the sequence {αn}n∈N fulfil

αn → 0 and
cαn

a(n/G)
p

G
= o(1).

Assumption 4.6 is a technical condition in which the significance level is not fixed but

converging to 0.

Assumption 4.7. (a) For all j = 1, . . . , q+1, it holds that

max
k j−1+G≤k≤k j−G

∥∥∥(Σ̂k(ã))−1/2 − (Σk(ã))−1/2
∥∥∥

F
= oP

(
log(n/G)−1)

.

(b) For each j = 1, . . . , q, it holds that

max
k:|k−k j |<G

∥∥∥(Σ̂k(ã))1/2
∥∥∥

F
<∞ and max

k:|k−k j |<G

∥∥∥(Σ̂k(ã))−1/2
∥∥∥

F
<∞,

At k sufficiently far from any change point (i.e. |k−k j| ≥G), the estimators Σ̂k(ã) are assumed

to be consistent, while for k satisfying |k−k j| <G, we only require its finiteness. The estimators

proposed in Section 4.3.2 are shown to meet Assumption 4.7 in Appendix B.3.5.

We define the detector

T(G, ã)= max
G≤k≤n−G

Tk(G, ã), Tk(G, ã)= 1p
2G

∥∥∥(Σk(ã))−1/2mk(G, ã)
∥∥∥ ,

which differs from (4.3) by using the infeasible Σk(ã). Proposition 4.1 derives the asymptotic null

distribution of the proposed test statistic. Proofs can be found in Section B.3.1; we note that the

proof is structured as a verification of the conditions for the corresponding Theorem 2.1 of Kirch

and Reckrühm (2022), which establishes the result more generally.

Proposition 4.1. Let Assumptions 4.1–4.4 hold. Let ã be some fixed parameter.

(a) Under H0, we have

a(n/G)T(G, ã)−b(n/G) D→G2,
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where G2 is a Gumbel-distributed random variable such that P(G2 ≤ x)= exp(−2exp(−x)),

a(x)=√
2log(x) , and

b(x)= 2log(x)+ p(dp+1)
2

log(log(x))− log
(

2
3
Γ

(
p(dp+1)

2

))
.

(b) Using the least squares estimator â1,n in (4.6),

a(n/G)T(G, â1,n)−b(n/G) D→G2.

(c) We can replace Σ(1)(ã) with an estimator Σ̂k(ã) as in (4.7) or (4.9) and the results of parts

(a) and (b) hold.

With the critical value cα, we identify the asymptotic distribution of the transformed statistics

under H0. As a result of Proposition 4.1, (4.4) defines a testing procedure with asymptotic level α,

where we define

D(G,α)= b(n/G)+ cα
a(n/G)

. (4.11)

Theorem 4.2 establishes that the score procedure consistently estimates both the number and

locations of detectable changes.

Theorem 4.2 (MOSUM score procedure consistency). Let Assumptions 4.1-4.6 hold.

(a) Using the score procedure, we have that

P

(
q̂ = q; max

1≤ j≤q
|k̂ j −k j| <G

)
→ 1

as n →∞.

(b) Letting wn →∞ and 0< wn <G(n) ·min j=1,...,qδ
2
j (ã), there exists some γ> 2 such that

P

(
max
1≤ j≤q

∣∣k̂ j −k j
∣∣δ2

j (ã)> wn

)
=O(w−γ/2

n )+ o(1).

(c) The results hold using the least squares estimator â1,n in (4.6), or an estimator Σ̂k(ã) as

in (4.7) or (4.9) in place of the true Σk(ã).

In part (b) of Theorem 4.2 we establish the rate of estimation which involves (δ j(ã))−2 defined

in Assumption 4.5. This matches the results in Qu and Perron (2007), where the jump size is

assumed either constant or to tend to zero such that cδ,n ·
√

n
log(n) →∞, and matches the OP (1)

rate established in Theorem 3.6 of Kirch and Reckrühm (2022) when cδ,n = cδ is a constant.

This rate depends on the selection of a parameter ã which is ‘good enough’ in the sense of

Assumption 4.5. We discuss the relaxation of this condition in Section 4.4.1.
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4.4 Extensions for improved detection power

4.4.1 MOSUM recursive segmentation

As we discuss in Remark 4.1, when using the MOSUM score procedure with a global inspection

parameter, there may exist changes which are not detectable in the sense of Assumption 4.5.

Adapting the Binary Segmentation (BS) algorithm (Vostrikova, 1981), we propose to recursively

apply the MOSUM score procedure on estimated stationary segments with data-dependent

inspection parameters, giving a procedure which asymptotically detects all change points as we

show in Theorem 4.3 below.

Algorithm 9 describes the MOSUMBS algorithm. For a given segment {s, . . . , e} for some

1 ≤ s ≤ e ≤ n, a local parameter estimator âs,e is obtained as in (4.6) with which the MOSUM

score procedure is performed and change point estimators are added to K̂ . This is repeatedly

performed on the segments defined by the consecutive elements of K̂ until no further change

point is detected. Initialised with (s, e)= (1,n) and K̂ =;, the call MOSUMBS(k̂ j+1, k̂ j+1,D,G,K̂ )

returns the final set of estimators.

Algorithm 3: MOSUMBS(s, e,D,G,K̂ ) Recursive Segmentation Algorithm
input : Start and end indices s and e, Threshold D, Bandwidth G, Change point set

K̂

if e− s > 2G then
Compute parameter âs,e
Compute statistic T ←maxs≤k≤e Tk(G, âs,e) as in (4.3)
if T > D then

Locate K̂s,e ← {k̂ j,s,e : s < k̂1,s,e < ·· · < k̂ q̂s,e,s,e < e} with (4.5)
Update global change point set K̂ ← K̂ ∪K̂s,e
for j = 1, . . . , q̂s,e +1 do

MOSUMBS(k̂ j−1,s,e +1, k̂ j,s,e,D,G,K̂ )
end

end
return K̂

Define as,e as the unique solution of

q+1∑
j=1

(
min

(
k j, e

)−max
(
k j−1, s

)+1
)
+ IE H

(
X ( j)

1 ,X( j)
0 ,as,e

)
= 0, (4.12)

where x+ =max(x,0). For a given pair (s, e) such that s < e, define

Ks,e =
{
k j,1≤ j ≤ q : min{k j − s+1, e−k j}≥ c−2

δ,n ·wn

}
(4.13)

for some wn →∞.

Assumption 4.8. For all pairs (s, e) such that s < e, we have:
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(a) Using ã= as,e in (4.12), if Ks,e in (4.13) is non-empty, we have that for at least one k j ∈Ks,e

and δ j(ã)≥ cδ,n > 0, where cδ,n ·
√

G
log(n/G) →∞.

(b) For any s ≤ s′ < k j < e′ ≤ e such that min{k j − s′, e′ − k j} ≤ δ−2
j (as,e) · wn, we have that

δ−2
j (as,e) ·δ2

j (as′,e′)=O(1).

Assumption 4.5 requires the existence of ã that ensures the detectability of all change points.

In place of this, we make Assumption 4.8 defined with local inspection parameters. This is

motivated by the observation made in Lemma B.11 that, over any interval {s, . . . , e} containing

change points which are well within the boundaries of the interval, at least one of them is

detectable with the local parameter as,e in the sense of Assumption 4.5. Part (b) requires that

the ratio of jump sizes at a given change point close to the active boundary may vary at a

constant rate given different inspection parameters, where the intervals are nested and contain

the change point of interest. Under Assumption 4.8, Theorem 4.3 demonstrates that the recursive

segmentation procedure detects a broader class of changes than the MOSUM score procedure.

Proofs can be found in Section B.3.3.

Theorem 4.3 (Recursive segmentation consistency). Let Assumptions 4.1–4.4, 4.6, and 4.8 hold.

(a) Using the recursive segmentation procedure, we have that

P

(
q̂ = q; max

1≤ j≤q
|k̂ j −k j| <G

)
→ 1

as n →∞.

(b) Let ã j be the inspection parameter with which k̂ j is detected. Letting wn →∞ and 0 <
wn <G ·min j=1,...,qδ

2
j (ã j), there exists some γ> 2 such that

P

(
max
1≤ j≤q

∣∣k̂ j −k j
∣∣δ2

j (ã j)> wn

)
=O(w−γ/2

n )+ o(1).

(c) The result holds using an estimator Σ̂k(ã) as in (4.7) or (4.9) in place of the true Σk(ã).

4.4.2 Multiscale MOSUM procedure

The theory justifying our method relies on Assumption 4.4, where the chosen bandwidth G

becomes small enough such that each change point may be isolated within a window of length 2G.

This suggests that G cannot be too large, while a larger G leads to greater detection power due to

Assumption 4.5. The true minimum spacing between changes is always unobservable, however,

and often hard to make reasonable prior choices for in practice. Moreover, the signal may be

multiscale, such that large frequent and small infrequent changes occur in the same series. To

account for these issues, we propose a bottom-up multiscale algorithm which runs the single-scale

procedure with bandwidths of increasing size and merges the resulting sets of estimated change
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points. Similar ideas are proposed in Messer et al. (2014) and Meier et al. (2021) for the mean

change point detection problem.

Define the bandwidth set G = {Gh : 1≤ h ≤ H, G1 < . . .<GH} with strictly increasing elements.

The null hypothesis is rejected if any of test statistics evaluated with bandwidth Gh ∈G exceed

their respective thresholds D(Gh,α). For the smallest bandwidth at which we reject, we take

the estimated change points as the initial set of changes. For each subsequent bandwidth Gh′ , a

detected point is added to the set only if the point is at least πGh′ away from any point already in

the change point set, for some π ∈ (0,1). We formalise this in Algorithm 8.

The procedure is consistent under single-scale changes by repeated application of Theorem 4.2.

It is possible to combine the multiscale and recursive segmentation discussed in Section 4.4.1 such

that, at each scale, change points are located with Algorithm 9 and combined in the bottom-up

fashion.

Algorithm 4: Multiscale MOSUM Algorithm
input :Bandwidth set G , Threshold set {D(Gh,α),h = 1, . . . ,H}, Localisation

parameter π
initialise :K̂ =;
for Th ∈G ,h = 1, . . . ,H, do

Calculate T̂k(Gh, ã) for k =G, . . . ,n−G
if T̂(Gh, ã)> D(Gh,α) then

Locate K̂ (Gh)← {k̂ j(Gh)}q̂
j=1 as in (4.5)

for k̂ j ∈ K̂ (Gh) do
if mink∈K̂ |k̂ j(Gh)−k| ≥πGh then

add k̂ j(Gh) to K̂

end
end
return K̂

4.5 Extensions based on computational considerations

4.5.1 Grid-based procedure

Due mostly to the cost of inverting each of the chosen Σ̂k, evaluating the detector at a given k

has a cost which grows polynomially in d and p, and doing this for all k =G, . . . ,n−G incurs this

cost O(n) times (we discuss computational complexity in Section 4.6.1); to avoid this fast growth

in complexity, we propose to adopt a coarse grid over which the detector T̂k(G, â) is computed. We

define the grid T with resolution constant r ∈ [G−1,1] as

T (r,G)=
{

t : t =G+d+mbrGc,0≤ m ≤
⌊

n−2G
rG

⌋}
. (4.14)
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This set collects every brGc-th point in the index set starting at t =G+d, the earliest at which the

MOSUM statistic can be evaluated. When r =G−1, we have the finest grid T = {G+d, . . . ,n−G},

and a larger value of r gives a coarser grid. After scanning over the grid, intervals with detectors

exceeding the threshold are filled in with score statistics, where the inspection parameter is

calculated over each contiguous interval of exceedance. To locate changes, we can use either of

the ε- or η-criteria as in (4.5) or (B.4.1); our theoretical results are derived with the former but

will hold with the latter by the same arguments as Lemma B.28. This reduces the overall cost by

up to a factor of G (see Table 4.1) while asymptotically achieving the same estimation guarantees

(see Theorem 4.4).

We describe the procedure as follows.

MOSUM score grid-based procedure

1. Identify all k ∈T such that T̂k(G, â1,n)≥ D(G,αn).

2. Collect these k into contiguous intervals such that k = si, si+1, . . . , e i, i = 1, . . . ,Q and extend

the intervals outwards to define the sets

Ti = {si −G, si −G+1, . . . , e i +G}.

3. Compute the estimator âTi as in (4.6) with s = si −G and e = e i +G.

4. For each i, calculate the statistic T̂k(G, âTi ) for each k in the set Ti. For each k, assign Tk

to be the pointwise maximum of T̂k(G, âTi ) over i.

5. Locate changes with the ε-criterion as in (4.5).

In Theorem 4.4 we collect a set of results stating that the previous consistency results hold

when using the grid-based procedure. Proofs can be found in Section 4.5.1.

Theorem 4.4 (Grid-based procedure consistency). The results of Theorem 4.2 holds for the

output {k̂ j : 1≤ j ≤ q̂} from the score grid-based procedure.

4.5.2 Dimension reduction

For a VAR model, the number of parameters grows linearly in the order d and quadratically in

the number of series p, making estimation difficult for moderately large VAR order and dimen-

sionality. We propose to use zero-restrictions on parameters, and a projection onto univariate

autoregressive models, both of which allow the analysis of larger data panels.
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4.5.2.1 Parameter restrictions

To reduce the number of parameters, we consider the proposal of Kirch et al. (2015) in which any

parameter believed a priori to have no influence on the response is set equal to 0 in the estimation

step. We consider the vector of parameters which are involved in modelling channel i = 1, . . . , p:

a(i)= (
ωi,a1i, . . . ,api, . . . ,adpi

)> ∈Rdp+1.

Denote the index set of the elements of a(i) whose values are equal to zero (i.e. no influence

on the ith channel) by I (i) = {r : a(i, r) = 0}, and the corresponding projection operator by

PI :Rdp+1 →Rdp+1−|I | such that for any Y ∈Rdp+1, we have PI (Y )= (Yr : r ∉I )>. We further

write aI(i)(i)=PI (i)(a(i)) and regressors XI(i),t−1 =P I(i) (Xt−1) for each channel. This gives the

reduced models

X it =


X (1)

it , k0 = 1≤ t ≤ k1,

X (2)
it , k1 +1≤ t ≤ k2,

...

X (q+1)
it , kq +1≤ t ≤ kq+1 = n,

where X ( j)
it = aI(i), j(i)>X

( j)
I(i),t−1 +εit. Note that the change points k j are common across channels.

4.5.2.2 Projection

We propose a projection method to further reduce the number of parameters. Rewriting the model

(4.1) as

X t =ω+
d∑

l=1
Al X t−l +εt,

we first remove cross-dependence in {X t}n
t=1 by constructing the series

Z t = X t −
d∑

l=1
OffDiag(Al)X t−l ,

where OffDiag :Rp×p →Rp×p is a function such that OffDiag(A) sets the diagonal elements of A
to 0. In practice, we use the global least squares estimators in (4.6) for Al . We then regress each

Zit on lagged observations Zit−1 = (1, Zi,t−1, . . . , Zi,t−d)>, so a given pair (s, e) such that s < e has

the parameter estimator

â[z]
s,e =


â[z]

s,e(1)>

â[z]
s,e(2)>

. . .

â[z]
s,e(p)>

 , â[z]
s,e(i)=

( e∑
t=s

ZitZ
>
t−1

)( e∑
t=s
Zt−1Z

>
t−1

)−1

, i = 1, . . . , p.

To ensure that the limit of the maximum of the detector in (4.3) under the projection is pivotal,

the residuals ε̂t(ã) from X t are plugged in to the estimating functions (4.2) in the MOSUM score
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procedure, so that

H t(ã)=−ε̂t(ã)⊗Zt−1,

where ã = â[z]
s,e. We also use estimators of Σ(1)

k (ã) designed for the univariate setting, adapting

Σ̂
(1)
k (ã) in (4.7) by plugging in Zt−1. This choice of function is motivated by the empirical observa-

tion that series often depend on themselves more so than on others; in principle, we can remove

the contributions of any component of A using an appropriate function in place of OffDiag; for

example, we could set one row to zero, isolating the effect of that variable on other channels.

4.5.3 Threshold bootstrap

We show in Proposition 4.1 that the size of the MOSUM score procedure is controlled asymp-

totically with the threshold in (4.11). Due to the slow convergence of the Gumbel distribution,

however, we cannot expect good performance when the sample size is small relative to the model

dimensions. Therefore we propose a parametric bootstrap method for obtaining a threshold,

which is of particular interest in combination with the projection method in Section 4.5.2.

We assume a correctly specified model under the null hypothesis. Fit a VAR model to the

entire series, computing the parameter estimators in (4.6) and the error covariance estimators in

(B.1.6). For each bootstrap iteration m = 1, . . . , M:

1. Using Gaussian innovations, simulate a series {X m
t }n

t=1 with the estimated parameters.

2. Store the maximum test statistic T̂m(G, â[m]
1,n ) = maxG≤k≤n−G T̂m

k (G, â[m]
1,n ), computed with

{X m
t }n

t=1 as in (4.3), where â[m]
1,n is estimated over the same data.

We then take the (1−α)-th quantile of the M recorded statistics as the threshold. Under the null

hypothesis, this will produce quantiles of the test statistic from realisations of a correctly-specified

model. When q ≥ 1, the realisation are drawn from a model with parameters approximating

a weighted mixture of the parameters from different regimes. This will not overly inflate the

threshold, but may make the procedure less sensitive to small changes. The bootstrap procedure

is computationally intensive, so to balance execution time with the quality of the estimate of the

quantile, we recommend setting M = 1000.

4.6 Numerical results

In this section, we discuss computational complexity and tuning parameter selection. We describe

the performance of our methods in Monte Carlo experiments, we compare our methods to others

available in the literature, and apply our methods to real data sets.
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4.6.1 Complexity

Table 4.1 lists the time complexity of procedure/estimator combinations. Denote the size of G as

|G |. The computation of the MOSUM score detector statistics can be carried out sequentially, see

Appendix B.5. For the localisation step of the grid-based procedure of Section 4.5.1, since q is

fixed and asymptotically estimated correctly, the cost is dominated by the grid search.

We can see that the cost grows faster with respect dimension for direct estimators than the

combined forms, and that the MOSUM score procedure is cheaper than the Wald due to the

sequential updating procedure. Grid-based methods are sub-linear in n, while the recursive

segmentation method incurs a log(n) factor, and the multiscale MOSUM procedure grows with

|G |.
Table 4.1: Computational complexity of proposed procedures

Procedure Estimator Σ̂k Time Complexity

MOSUM score (4.7) O
(
d2 p2 max(p2,d)+ndp

)
(4.9) O

(
d3 p6 +ndp2)

MOSUM Wald (B.1.5) O
(
np3d2)

(Section B.1) (B.1.7) O
(
np6d3)

Recursive segmentation (4.7) O
(|G | · (d2 p2 max(p2,d)+ndp)

)
(Section 4.4.1) (4.9) O

(|G | · (d3 p6 +ndp2)
)

Multiscale MOSUM (4.7) O
(
log(n) · (d2 p2 max(p2,d)+ndp)

)
(Section 4.4.2) (4.9) O

(
log(n) · (d3 p6 +ndp2)

)
Grid-based (score) (4.7) O

(
d2 p2 max(p2,d)+ n

rG dp
)

(Section 4.5.1) (4.9) O
(
d3 p6 + n

rG dp2)
Grid-based (Wald) (B.1.5) O

( n
rG p3d2)

(Section B.1.2.1) (B.1.7) O
( n

rG p6d3)

4.6.2 Tuning parameters

Threshold The transformed critical value D(G,α) from (4.11) involves an evaluation of the

Gamma function, meaning D(G,α) grows very slowly with respect to d and p, and can even

take negative values. The slow convergence is discussed with simulation evidence in Section 5 of

Dvořák (2017). We recommend fixing α= 0.05. We hence propose using the adjusted critical value

D̃n(G,α)=max

{
D(G,α),

√
2log(n) + cα√

2log(n)

}
(4.15)

which is guaranteed to be positive.

VAR order In the simulations in Section 4.6.3, we treat the lag order d as known. For data-

driven selection, we suggest minimising the Schwartz Information Criterion (SIC) (Lütkepohl,
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2005)

SIC(d)= G
2

log

(
1
G
‖

G∑
t=d+1

(
X t − â1,G[d]Xt−1[d]

)‖2

)
+d log(G),

for models fit with all available samples from t = 1, . . . ,G, where â1,G[d] is the estimator corre-

sponding to Xt−1[d] which consists of Xi,t−1 =
(
X i,t−1, . . . , X i,t−d

)> , i = 1, . . . , p.

Bandwidth To select G, we want to control the parameter estimation error, while also meeting

the requirement that G ≤ min j(k j − k j−1)/2. To relate G to p and n, we simulated datasets

under (4.16) with q = 0, d = 1, and varying (n, p,G) (the entries a′
ii′ are chosen uniformly on [−1,1]

and ρ uniformly on [0.2,0.7]), recording the relative `2-error max0≤k≤n−G‖a‖−1
2 ‖âk+1,k+G −a‖2

for each realisation. Then, regressing the 90%-percentile of the estimation errors over 100

realisations onto log(G), loglog(
√

dp2 ) and loglog(n) (giving R2 = 0.8447), we obtain the rule to

determine the finest bandwidth as G =G(n, p,d)= exp(c0 − c1 loglog(n)+ c2 loglog(
√

dp2 )) with

ci > 0, i = 0,1,2, obtained from the regression coefficients.

Both the MOSUM score and Wald procedures require G ≥ p(dp+1)+ p(p+1)/2 due to the de-

grees of freedom expended by using the estimators â1,n and Σ̂k. To ensure reasonable estimation

we hence recommend that G ≥max{p(dp+1)log(p(dp+1)), (4/3)n2/3}; if the above recommended

bandwidth G(n, p,d) does not satisfy the requirement, we recommend the dimension reduc-

tion methods discussed in Section 4.5.2. For the multiscale algorithm, we recommend using

G1 =G(n, p,d), G2 = b(4/3)G1c, and G3 = b(5/3)G1c.

Localisation Based on simulation, we recommend localising with ε= 0.5 (per (4.5)) with the

MOSUM score procedure, η= 0.25 with the MOSUM Wald procedure (per (B.4.2)), ε= 0.7 with

the recursive segmentation procedure, and π= 0.5 in the multiscale MOSUM procedure. These

prevent spurious detection while retaining good localisation properties.

4.6.3 Simulation studies

We examine how the proposed methods perform under varying model parameters, namely the

dimensionality, lag, distance between changes, detectability of changes, and sample size. Each

extension is tested in a specifically designed setting. We use the level of significance α= 0.05.

Each setting uses N = 100 simulations1.

Performance evaluation metrics When q ≥ 1, we report the distribution of q̂−q. We quantify

the quality of the estimated segmentation using the Covering Metric (CM, Arbelaez et al. (2010);

van den Burg and Williams (2020)) as follows. The true change points {k j}
q
j=1 define a partition

1Simulations are performed in the R language (R Core Team, 2020) with the ‘Rcpp’ package (Eddelbuettel et al.,
2011) and ‘armadillo’ library (Sanderson and Curtin, 2016) on an Intel Core i7-8650U CPU @ 1.90GHz (8 Cores)
processor. This work was carried out using the computational facilities of the Advanced Computing Research Centre,
University of Bristol.
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P of {1, . . . ,n} into disjoint sets S j = {k j−1 +1, . . . ,k j}. We denote the estimated equivalents for

{k̂ j}
q̂
j=1 as P̂ and Ŝ j. The CM is then

C (P̂ ,P )= 1
n

∑
S ∈P

|S |max
Ŝ ∈P̂

{
S ∩ Ŝ

S ∪ Ŝ

}
.

We have C (P̂ ,P ) ∈ [0,1] with 1 denoting a perfect segmentation. As opposed to the Hausdorff

metric (3.20) used in Chapter 3, this metric does not systematically favour over-estimation of the

number, and is perhaps an easier summary to interpret. When q = 0, we report the empirical

size, i.e. the proportion of the realisations for which q̂ ≥ 1.

4.6.3.1 Settings

We simulate from A( j)
l under each regime so that for t = k j +1, . . . ,k j+1,

X t =
d∑

l=1
A( j)

l X t−l +εt. (4.16)

The parameters are defined as follows: letting A′ have diagonal entries a′
ii = 0.7 and off-diagonal

entries a′
ii′ = −0.1, i 6= i′, we set A(1)

l = ρ j A′/‖A′‖2
F , for l = 1, . . . ,d, where ρ j ∈ R is a scalar

controlling the signal strength. We generate errors so that εt ∼ Np(0, I p). For each setting, we

simulate under q = 0, and for some q ≥ 1 as specified. In all settings, we report results from the

MOSUM Wald and score procedures.

(M1) We test a design with varying dimensionality p ∈ {3,4,5}. We have n = 900, d = 1, and q = 2

change points at k1 = 300 and k2 = 600. When q ≥ 1, we set ρ1 =−ρ2 = ρ3 = 0.7. We also

report results with the covariance estimators (4.9) and (B.1.7)

(M2) We test a design with varying lags d ∈ {1,2,3}. We have n = 900, p = 2, and q = 2 change

points at k1 = 300 and k2 = 600. When q ≥ 1, we set ρ1 =−ρ2 = ρ3 = 0.7.

(M3) We test a design with varying n ∈ {3000,6000,9000}. We fix p = 3,d = 1, and have q = 2

change points at k1 = n/3 and k2 = 2n/3. When q ≥ 1, we set ρ1 =−ρ2 = ρ3 = 0.5. We compare

the grid-based approaches with the resolution r = 1/10

(M4) We test a design with multiscale changes. We vary n ∈ {1400,2100,2800}. We fix p = 3,d = 1,

and have q = 5 change points at k1 = n/14,k2 = n/7,k3 = 2n/7,k4 = 3n/7, and k5 = 5n/7, and

we set ρ1 = −ρ2 = 1,ρ3 = −ρ4 = 1/
p

2 , and ρ5 = −ρ6 = 1/2. The distance between changes

increases with j but the size of the change decreases. Here we compare multiscale MOSUM

procedures.

(M5) We test a design with varying dimensionality p ∈ {10,15,20}. We have n = 900, d = 1, and

q = 2 change points at k1 = 300 and k2 = 600. When q ≥ 1, we set ρ1 = −ρ2 = ρ3 = 1. We

compare the dimension reduction procedure per Section 4.5.2; the threshold is determined

by the bootstrap procedure in Section 4.5.3.
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(M6) We test a design with varying signal strength ρ1 =−ρ2 = ρ3 ∈ {0.4,0.6,0.8}. We have n = 900,

p = 3, d = 1, and q = 2 change points at k1 = 300 and k2 = 600. We also report the recursive

segmentation procedure.

(M7) We investigate how the procedure handles model misspecification, using a moving average

design so that X t = εt +∑q+1
j=1 A( j)I{k j +1≤ t ≤ k j+1} · εt−1, setting n = 900, q = 2 change

points at k1 = 300 and k2 = 600, and ρ1 =−ρ2 = ρ3 = 1.5. We vary p ∈ {3,4,5}.

(M8) We test a design with heavier tails, simulating the errors from a scaled multivariate t-

distribution so that εit ∼iid
p
ν/(ν−2) · tν, varying the degrees of freedom ν ∈ {3,5}. We

have n = 900, d = 1, and q = 2 change points at k1 = 300 and k2 = 600. When q ≥ 1, we set

ρ1 =−ρ2 = ρ3 = 0.7.

4.6.3.2 Results

We report the results in Tables 4.2–4.3. Setting (M1) shows that performance is generally worse

with increasing p, and that the MOSUM score procedure far outperforms the MOSUM Wald

procedure. The direct covariance estimators can give better localisation with the MOSUM Wald

procedure, but fail to control size with the MOSUM score procedure. Setting (M2) shows that

increasing the lag has a very serious impact on detection and localisation performance. In

idealised designs, the MOSUM Wald procedure can localise better than the MOSUM score

procedure. Setting (M3) shows the grid-based MOSUM score procedure is more reliable than

the grid-based MOSUM Wald procedure at smaller sample sizes, but the performance of the

two converges with n. Setting (M4) shows that, in a multiscale setting, the score and recursive

methods tend to perform better than the MOSUM Wald procedure. Indeed, the short segments

lead to worse estimation of the regression parameter, explaining the poorer performance of the

MOSUM Wald procedure for smaller n, though this difference is less pronounced for n = 2800;

the systematic over-estimation of the number here is due to the smallest bandwidth generating

spurious estimators when the jumps are large. Setting (M5) shows that the dimension reduction

and bootstrap have good size control, and has good localisation properties for p between 10 and 15,

though the detection properties diminish as p grows. Setting (M6) shows that, for smaller signals,

the recursive segmentation procedure is more sensitive than the others while still maintaining

size control. Setting (M7) shows that the MOSUM Wald procedure performs particularly well

under model misspecification. Setting (M8) shows that both methods are fairly robust to heavy

tails, comparing to the results in Setting (M1).

We here mention that, since each method is implemented in C++, the orders of the runtimes

for each is sufficiently small (on the order of 10−3 seconds for the settings we consider in this

section) that a comparison is uninformative. We should expect that the MOSUM score procedure

is faster than the MOSUM Wald procedure, and that this comes at the expense of computation
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time, though this is not the case in our results. This phenomenon may occur, however, when

translating our ideas to more expensive models.

The overall similar performance of the MOSUM score and Wald prcoedures, given we should

expect the Wald to perform better, can also be explained by the short data series we use examine

in our study. The small values for n imply a small value for G through our choice in Section 4.6.2.

This will incur error in the estimation of the regression parameter, which is carried over to the

estimation of change numbers and locations. Larger values for n are uncommon in macroeconomic

and financial applications, and as such we concentrate on settings with smaller n.

4.6.4 Comparative simulations

We compare to the simulation results of McGonigle and Cho (2023) for the detection of changes in

temporal dependence. They propose a non-parametric moving window method for the segmenta-

tion of dependent time series, which measures for differences in joint characteristic functions. We

report their results when the method considers multiple lags (NP-MOJO-L ). Also reported are

results from the wavelet-based wild binary segmentation (WBSTS) method proposed in Korkas

and Fryzlewicz (2017) when p = 1, and the sparsified binary segmentation (SBS) method proposed

in Cho and Fryzlewicz (2015) when p = 2. We looked for implementations of methods which are

designed for the same settings as our methods, such as Bai (2000), but none of these were readily

available in R.

For the autoregressive models (C1) and (C3), we use d = 1, and for the moving average

models (C2) and (C4), we select the order adaptively. We have q = 2, (k1,k2) = (333,667) and

εt ∼i.i.d. N(0,1).

(C1) X t = X ( j)
t = a( j)X ( j)

t−1 +εt for k j +1≤ t ≤ k j+1, where (a(1),a(2),a(3))= (−0.8,0.8,−0.8).

(C2) X t = εt +∑q+1
j=1 a( j)I{k j +1≤ t ≤ k j+1} ·εt−2, where (a(1),a(2),a(3))= (−0.7,0.7,−0.7).

(C3) X t = X ( j)
t = A j X

( j)
t−1 + εt for k j + 1 ≤ t ≤ k j+1, where A(1) = A(3) = (0.5 0.1

0.1 0.5
)

and A(2) =(−0.5 0.1
0.1 −0.5

)
.

(C4) X t = εt +∑q+1
j=1 A( j)I{k j +1≤ t ≤ k j+1} ·εt−1, where A(1) = A(3) = ( 1 0.1

0.1 1
)

and A(2) = (−1 0.1
0.1 −1

)
.

Model (C1) was studied in Korkas and Fryzlewicz (2017), while models similar to (C3) and (C4)

were considered in Preuss et al. (2015b).

We report results in Table 4.4. We can see that our methods are competitive. In Setting (C1),

the MOSUM Wald procedure performs almost identically to NP-MOJO-L ; we would expect

to be the best here due to the parametric specification, however this is not possible since the

performance is almost perfect. In Setting (C2), under a misspecified model, the MOSUM Wald

procedure performs well though the score-based methods lack power. As we would expect, our

methods excel in Setting (C3), and though the model is again misspecified, ours are almost perfect
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Table 4.2: (M1)–(M5): we report the distribution of the estimated number of change points and the average
CM over 1000 realisations. The best performer for each metric is given in bold.

q̂− q
Setting Method Variable CM ≤-2 -1 0 1 2 Size

(M1) MOSUM score p = 3 0.9694 0 2 98 0 0 0
4 0.9481 0 4 91 5 0 0.02
5 0.9146 0 2 76 20 2 0.17

MOSUM Wald 3 0.9195 1 15 84 0 0 0
4 0.8044 6 39 55 0 0 0
5 0.7771 9 37 52 2 0 0.03

MOSUM score 3 0.9599 0 0 89 10 1 0.11
(with (4.9)) 4 0.9066 0 1 69 24 6 0.89

5 0.7884 0 43 46 10 1 1

MOSUM Wald 3 0.9438 1 8 91 0 0 0
(with (B.1.7)) 4 0.8385 6 28 65 1 0 0

5 0.8074 6 32 58 4 0 0.03

(M2) MOSUM score d = 1 0.9654 0 0 87 13 0 0
2 0.8220 2 37 52 9 0 0
3 0.4948 49 42 7 2 0 0

MOSUM Wald 1 0.9832 0 0 99 0 1 0.02
2 0.6923 5 66 26 3 0 0.24
3 0.5359 33 53 13 1 0 0.37

(M3) MOSUM score n = 3000 0.9914 0 0 100 0 0 0
(grid-based) 6000 0.9955 0 0 100 0 0 0

9000 0.9974 0 0 100 0 0 0

MOSUM Wald 3000 0.9806 0 3 94 3 0 0
(grid-based) 6000 0.9850 0 3 95 2 0 0

9000 0.9944 0 1 99 0 0 0

(M4) MOSUM score n = 1400 0.8438 11 80 9 0 0 0
(multiscale) 2100 0.8941 0 72 26 2 0 0

2800 0.9620 0 0 39 60 1 0

MOSUM Wald 1400 0.4635 98 2 0 0 0 0
(multiscale) 2100 0.6916 61 35 4 0 0 0

2800 0.8078 1 24 47 28 0 0

Recursive 1400 0.8296 13 82 5 0 0 0
(multiscale) 2100 0.8847 1 68 31 0 0 0

2800 0.9500 0 2 40 58 0 0

(M5) MOSUM score p = 10 0.7769 9 40 51 0 0 0
(dimension reduction) 15 0.4147 75 23 2 0 0 0

20 0.3393 98 2 0 0 0 0

MOSUM Wald 10 0.9363 0 3 94 3 0 0.06
(dimension reduction) 15 0.7098 13 46 39 2 0 0.05

20 0.5000 48 45 7 0 0 0.06
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Table 4.3: (M6)–(M8): we report the distribution of the estimated number of change points and the average
CM over 1000 realisations. The best performer for each metric is given in bold.

q̂− q
Setting Method Variable CM ≤-2 -1 0 1 2 Size

(M6) MOSUM score ρ = 0.4 0.3967 81 18 1 0 0 0
0.6 0.8557 3 30 66 1 0 0
0.8 0.9806 0 0 100 0 0 0

MOSUM Wald 0.4 0.3426 97 3 0 0 0 0
0.6 0.6846 21 49 30 0 0 0
0.8 0.9745 0 1 99 0 0 0

Recursive 0.4 0.6509 25 47 26 2 0 0
0.6 0.9596 0 2 93 5 0 0
0.8 0.9691 0 0 91 9 0 0

(M7) MOSUM score p = 3 0.4012 68 32 0 0 0 0
4 0.4533 48 44 7 1 0 0
5 0.5354 24 44 21 10 1 0.1

MOSUM Wald 3 0.6610 0 15 85 0 0 0
4 0.6371 0 40 60 0 0 0
5 0.6271 0 55 44 1 0 0

(M8) MOSUM score ν= 3 0.9398 0 5 90 5 0 0
5 0.9632 0 1 95 4 0 0

MOSUM Wald 3 0.8559 0 27 67 6 0 0
5 0.8684 2 27 70 1 0 0

under Setting (C4). This particular moving average model is likely well approximated by the

VAR, and we note that all the methods perform well here.

4.6.5 Applications

4.6.5.1 Bristol air quality data

According to the World Health Organisation, air pollution kills an estimated seven million

people worldwide every year. Many different particulates and chemicals are present in the air,

particularly in urban areas, and understanding how the concentrations of these change over time

can aid us in designing and evaluating public policy. We propose to use our methods to identify

changes in the second-order structure for measurements of NOx (Nitric oxide and nitrogen

dioxide) levels in Bristol, UK.

The methods we propose are suitable here, since serial and spatial dependence is present in

these levels, but abrupt changes can occur, perhaps due to policy choices or exogenous shocks.

Moreover, the piecewise structure of the resulting model is simple and easy to interpret. Changes
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Table 4.4: (C1)–(C4): we report the distribution of the estimated number of change points and the average
CM over 1000 realisations. The best performer for each metric is given in bold.

q̂− q
Model Method CM −2 −1 0 1 ≥ 2

(C1) Score 0.945 0 1 741 225 33
Wald 0.977 0 1 977 22 0

Recursive 0.965 0 0 919 75 6

NP-MOJO-L 0.980 0 0 986 12 0
WBSTS 0.904 0 0 414 299 287

(C2) Score 0.418 760 219 21 0 0
Wald 0.955 2 79 917 2 0

Recursive 0.362 914 84 2 0 0

NP-MOJO-L 0.950 1 51 942 6 0
WBSTS 0.896 7 21 899 62 11

(C3) Score 0.980 0 2 991 7 0
Wald 0.977 0 13 984 3 0

Recursive 0.978 0 3 993 4 0

NP-MOJO-L 0.907 4 165 818 13 0
SBS 0.903 70 0 911 19 0

(C4) Score 0.985 0 0 999 1 0
Wald 0.985 0 7 993 0 0

Recursive 0.981 0 2 998 0 0

NP-MOJO-L 0.976 0 12 979 9 0
SBS 0.967 6 0 961 33 0

in cross-channel correlations might indicate changing spatial patterns, while changes in serial

dependence could indicate differences in persistence, and intercept changes will indicate changes

in the conditional average levels.

Similar analyses to ours are made in Fassò (2013), where a policy intervention is evaluated

with a known change point, and in Voynikova et al. (2015) where a forecasting model is built with

exogenous regressors. Rinaldo et al. (2021) look for parameter changes under a high-dimensional

regression model, while Cho and Fryzlewicz (2020) apply a method for univariate mean changes

under serial dependence. Yin et al. (2021) use a stationary network autoregressive model for an

aggregated air quality index.

Over the period from January 2019 to January 2022 we have hourly readings of NOx levels

at five locations around Bristol2; see Figure 4.2. To improve the signal quality of the data and

handle missing observations, we take daily averages, giving n = 1099 and p = 5. We control for

2Data are available from Open Data Bristol.
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meteorological and seasonal effects by regressing
√

NOxt onto 6 covariates: Temperature, Wind

speed, Wind direction, Atmospheric pressure, and factors for the Day of the Week and the Season.

NOx readings are bounded below and demonstrate large excess kurtosis, so we use a square root

transform.

Figure 4.2: Map of Bristol, UK with air quality detectors (labelled with site IDs) located at AURN St
Pauls (452); Brislington Depot (203); Parson Street School (215); Wells Road (270); Fishponds Road (463).
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Figure 4.3: Left:
√

NOx levels (controlling for meteorological and seasonal effects, in µg/m3), January
2019 - September 2022, in Bristol, UK. Different colours and line types indicate different detector locations.
Right: Estimated intercept values for each estimated segment. Estimated change points marked with
vertical lines.

We report results from the MOSUM score procedure described in Section 4.3. The recursive

and multiscale procedures gave similar results. The MOSUM Wald procedure returned three

change point estimators which are a subset of the estimators returned by the MOSUM score

procedure. Tuning parameters chosen as recommended in Section 4.6.2: we use a bandwidth

G = 140 covering twenty weeks; using the ε-criterion here would be unsuitable as the detector
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Figure 4.4: Parameter heatmaps for each estimated segment for the air quality data studied in Section
4.6.5.1. Red hues denote large positive values and blue hues denote large negative values, within the
interval [−1,1].

uniformly exceeds the threshold, so changes are located with η= 0.25.

We detect q̂ = 6 change points located at August 24th 2019 (k̂1), January 22 2020 (k̂2),

September 20 2020 (k̂3), January 15 2021 (k̂4), May 09 2021 (k̂5), and July 10 2021 (k̂6). Changes

k̂2 and k̂3 mark the start and end of the initial Covid-19 lockdown, and the effect on emissions

through reduced activity can be seen in the sharp drop in the intercept terms plotted in Figure 4.3.

This is consistent with the findings of the street-level analyses of Jenkins et al. (2020).

Figure 4.4 plots heatmaps of the parameters for the estimated segments. In each segment,

each series tends to exhibit strong positive autocorrelations, but the pattern of dependence across

channels is subject to change. The cross-dependence is particular weak in the third estimated

segment, corresponding to the Covid-19 lockdown, which also indicates that airborne matter was

less mobile during this period.

Persistent dependence over long time scales is a commonly noted feature of air quality data.

Chelani (2016) ascribe this to long memory and give physical justifications. However as noted

by e.g. Norwood and Killick (2018), slow ACF decay can also be caused by structural breaks. To

confirm whether the slow ACF decay is in fact due to structural breaks or long memory, we inspect

the ACF on stationary segments. We look at site 452, the closest to the city centre, although our

findings are similar across the sites. In Figure 4.5, we plot the empirical ACF estimated on the

entire series, and on the first estimated segment {1, . . . , k̂1}. The ACF decays much faster in the

latter, which provides an alternative explanation for the persistence observed in the air quality

data.

4.6.5.2 Macroeconomic data

VAR models are often used in macroeconomics for forecasting and identifying shock transmissions.

Aastveit et al. (2017) evaluate the evidence for parameter stability since the 2008 global financial

crisis, allowing for smoothly-varying parameters or regime-switching behaviour. We analyse

an extension of the same data using our methods. Our panel consists of p = 4 series: GDP,

unemployment, core PCE inflation, and the federal funds rate, with quarterly data from 1959Q2

to 2022Q2, giving n = 253. We take the growth rate of GDP (i.e. GDPt/GDPt−1), and the first
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Figure 4.5: Empirical ACF of
√

NOx levels (controlling for meteorological and seasonal effects) at site
452. Left: Estimated on t = 1, . . . ,n. Right: Estimated on t = 1, . . . , k̂1.

differences of the other series, to account for unit-root behaviour3.

We use the MOSUM score procedure, in combination with the dimension reduction procedure

and bootstrap threshold discussed in Section 4.5. We set the VAR order as d = 2 following Aastveit

et al. (2017) and adopt the bandwidth G = 32 corresponding to 8 years which is considered large

enough to ensure reasonable estimation of a1,n. Changes are localised with the η−criterion, as

the detector mostly exceeds the threshold, possibly due to model misspecification. The ε−criterion

would only return a single estimator here, so is not appropriate. Figure 4.6 plots the series and the

q̂ = 3 estimated change points, which are located at 1970Q3 (k̂1), 1983Q2 (k̂2), 1989Q1 (k̂3), and

2013Q4 (k̂4). Under varying specifications, the authors of Aastveit et al. (2017) find evidence for

parameter breaks in 1980Q4, 1992Q4, and 2008Q4; the first two of these approximate our k̂2 and

k̂3. They also find evidence for changes in the error covariance, at 1985Q1 and Q2, 1987Q2, and

2013Q1. For their method, this depends on the regression parameter, so we may also correspond

the last of these to our k̂4. We would expect to see an estimated change associated with the global

financial crisis of 2008-2009, however the nearby estimated break k̂4 takes precedence due to our

choice of G and the use of the η-criterion. In Figure 4.6 the series visibly change in behaviour

around 2020, likely due to the Covid-19 pandemic, though we do not have enough data post-event

to detect any changes associated with this.

Considering the series of residuals from the model fitted on each (estimated) stationary

segment, the multivariate (adjusted) portmanteau test (Lütkepohl, 2005, Section 4.4.4) rejects

the null hypothesis of independence only for the final segment, using the multiplicity-corrected

significance α= 0.05/5= 0.01. Figure 4.7 plots heatmaps of the parameters for each estimated

segment. We can see that the parameters vary across segments, for example the cross-dependence

structure changes from segment two to segment three. This observation corresponds to varying

levels of volatility that can be seen in Figure 4.6. The penultimate segment lies mostly within the

3These are available from the FRED website fred.stlouisfed.org/series, and for simplicity we consider the
most recent vintage.
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so-called ‘Great Moderation’, a period of low volatility which ended in 2007, and this is reflected

by small estimated parameter values. The large parameter values in the final segment reflect

the period of volatility around the outbreak of the novel coronavirus in 2020, and explain the

rejection by the portmanteau test.

Year
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1960 1970 1980 1990 2000 2010 2020

-5
0

5
10

Figure 4.6: Macroeconomic panel time series studied in Section 4.6.5.2. Different colours and line types
indicate different series. Estimated change points marked with vertical lines.
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Figure 4.7: Parameter heatmaps for each estimated segment for the macroeconomic data studied in
Section 4.6.5.2. Red hues denote large positive values and blue hues denote large negative values, inside
the interval [−5,5].
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4.7 Conclusion

We propose methods to detect and locate multiple change points in multivariate time series

under a vector autoregressive model. We derive a score-type moving window procedure specific

to this problem, and establish its consistency in multiple change point detection. Further, we

propose extensions of the procedure which are designed to improve challenges associated with

improving detection power, efficient computation and handling moderately large dimensions.

To ease computation for large samples, we propose grid-based procedures, which reduce the

dependence of the time complexity on the sample size to sub-linear order, but have the same

asymptotic properties as the full-resolution procedure. A recursive segmentation method is

proposed for change points which are otherwise undetectable, and a bottom-up merging procedure

is used to detect multiscale changes. We also use a projection for dimension reduction, which

can be combined with a parametric bootstrap, to allow the procedure to be used with panels of

larger dimension. The methods are empirically validated with extensive simulation studies, and

two applications to air quality and macroeconomic datasets. The extensions we have made to

the MOSUM procedure are generic, so can be used for other models by specifying a different

estimating function.

We have chosen the method discussed in this chapter, in comparison to a method designed for

high-dimensional data such as that discussed in Chapter 3, as the current presentation allows

precise asymptotic statements on consistency in the fixed-dimensional regime, which allows

the choice of a threshold in the procedure which is motivated by theory rather than the data.

Moreover, we have no need for structural assumptions such as sparsity, which can be restrictive

or unrealistic, and have fewer tuning parameters to choose as a result.
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5
SEGMENTING AND FORECASTING NONSTATIONARY

FACTOR-AUGMENTED REGRESSION MODELS

5.1 Introduction

Macroeconomic and financial time series data often exhibit two properties. First, informa-

tion is shared across series via strong correlations (Stock and Watson, 2002a). Second,

instabilities occur in the generating process (Rossi, 2021; Stock and Watson, 1996,

2002b). In light of this, how should we produce forecasts? The first point is often addressed by

using factor models, which assume that the shared variation in large panels can be explained by

a low-dimensional model. For the second, a simple, interpretable explanation is the piecewise-

stationary assumption, where model parameters are constant between unknown change points.

The task for us is then to identify the number and locations of changes, and incorporate this

knowledge into factor model forecasts.

In this work, we study the diffusion index forecasting model (Bai and Ng, 2006; Stock and

Watson, 2002a,c), a regression model with observable and latent (factor) regressors. We observe

tuples {(yt, X t,ut)}n
t=1, where yt is the diffusion index of interest, X t = (X1t, X2t, . . . , X pt)> ∈Rp is

a vector of dependent time series, and ut ∈Rpy−r is a vector of covariates.

One goal is to predict X n+1 given the history {X t}n
t=1. For this, we assume X t follows a static

factor model

X t =χt +εt. (5.1)

The common component {χt}t∈Z, where χt =ΛF t, consists of latent factors F t = (F1t,F2t, . . . ,Frt)> ∈
Rr, multiplied by Λ ∈ Rp×r, a fixed matrix of loadings. The factor dynamics follow a piecewise

stationary vector autoregressive (VAR) process for which the parameters are piecewise constant

between change points; we can use the VAR structure to forecast Fn+1, and hence forecast X n+1.
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The idiosyncratic component {εt}n
t=1 is a zero-mean, white noise process. We describe the model in

detail in Section 5.2.

Another goal is to predict yn using X n and un. For this we consider a factor-augmented

regression model for the diffusion index yt, such that

yt =β>zt +εy
t (5.2)

where zt =
(
F>

t ,u>
t
)> ∈ Rpy . In this work we also treat the regression parameter β ∈ Rpy as

piecewise constant between change points. {εy
t }n

t=1 is a univariate zero-mean, white noise process

with Var(εy
t ) = σ2. For the final goal, to predict yn+1 we require a forecast for Fn+1, and so the

two other tasks are complementary.

To account for piecewise-stationarity, we develop data segmentation methods to identify

structural breaks in (i) the low-dimensional VAR parameters, and (ii) the diffusion index regres-

sion parameters, while not assuming common breaks across the two. The estimated breaks are

incorporated into short-term forecasts by re-weighting the data during model estimation.

In simulations we show that our method has competitive performance for change point

detection, and highlight the benefit of weighted forecasts under discrete breaks. In an application

to real macroeconomic data with economic indicators and a risk premium, we identify changes

corresponding to real events and show our forecasts compare favourably to the widely-used

rolling window approach.

Data segmentation for factor models There is a vast literature on instability in factor

models. Broadly, these can be divided according to the part (or parts) of the model in which

instability is present. These are the (i) loadings, (ii) factor number, and (iii) second-order structure.

For a single break in (i) and (ii), tests and estimators are proposed by e.g. Breitung and Eickmeier

(2011), Chen et al. (2014), Corradi and Swanson (2014), Han and Inoue (2015), Bai et al. (2020a),

Duan et al. (2023), and Koo et al. (2023), and multiple changes are considered in Su and Wang

(2017), Ma and Su (2018), and Liu and Zhang (2021b). Less focus, however, has been given to

changes in (iii). Barigozzi et al. (2018) consider a static factor model with changes in both the

factor and idiosyncratic components. Cho et al. (2022) do the same, assuming a generalised

dynamic factor model and a VAR structure in the idiosyncratic component, while Barigozzi and

Trapani (2020) propose a sequential method. Kim et al. (2021) consider testing for a single change

in the low-dimensional VAR parameters of a static factor model. This is a similar but distinct

problem to segmentation under a low-rank VAR model (Bai et al., 2020b, 2023; Enikeeva et al.,

2023).

Under the factor-augmented regression model, Corradi and Swanson (2014) and Massacci

(2019) perform inference for a single break, while Wang et al. (2015) perform estimation. For

forecasting, Banerjee et al. (2008) allow for instability in the loadings of the factor model, while

Stock and Watson (2009) allow for instability in the regression relationship.
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Estimation and forecasting under structural breaks When forecasting with parameter

instability, the problem is to identify which window(s) of observations to use, and how to weight

the resulting data. This has been considered in a range of sources such as Pesaran et al. (2013),

which considers optimal forecasts under sudden or smooth changes. Intuitively, if changes occur

sufficiently far in the past, the model can be estimated well on post-break observations. When

breaks are recent, however, as with the online setting, Pesaran and Timmermann (2007) make the

case that the bias-variance trade-off can be exploited by using pre-break data, provided breaks are

not too large. Hännikäinen (2017) compares window-based methods available in the literature,

namely rolling windows, exponentially-weighted moving averages, and the average window

method of Pesaran and Pick (2011). Assenmacher-Wesche and Pesaran (2008) and Pesaran et al.

(2009) focus on VARs in particular. Stock and Watson (2009) consider forecasting from a Dynamic

Factor Model (DFM) in the presence of instabilities. Remarkably, they find that using the entire

sample for estimation but only a subsample for forecasting improves the forecasting performance

when compared to using subsamples for both. Bates et al. (2013) discusses estimation of the DFM

under instability, showing that potentially ‘large’ breaks can be safely ignored for the consistent

estimation of the loadings, but not in estimating the factor number. Giraitis et al. (2015) allows

varying memory processes, generalising the adaptive window methods and discussing data-driven

choices for the window size. Massacci and Kapetanios (2023) study the effect of a structural break

on forecasts from a factor-augmented regression.

Often in practice, either rolling windows of fixed length or the entire sample are used for

estimation and prediction. As demonstrated in Rossi (2021), this may lead to a deterioration in

forecasting performance.

The broader concept of learning in non-stationary environments, known as concept drift

(Krempl et al., 2021; Lu et al., 2018), has recently received much attention. Our proposal offers a

method for learning under a specific model when discrete shifts occur, and this could be easily

adapted to other models.

Diffusion indices Diffusion index (or factor-augmented regression) forecasting is well-studied,

and often applied to GDP and inflation data (Bai and Ng, 2009; Stock and Watson, 1999). This

is related to the nowcasting problem, where the goal is to predict a response observed at a low

frequency given access to higher-frequency regressors. Bańbura et al. (2013) reviews the problem,

and mentions a stationary version of the model in (5.3). Bell et al. (2014) mention parameter

instability as a challenge to be addressed.

We highlight the following contributions made in this work.

(i) Multiple changes in factor dynamics and factor-augmented regressions. We are

the first to propose a method to detect multiple changes in the latent VAR parameters of a

factor model, or in the parameters of a factor-augmented regression model. We also give

recursive segmentation schemes and multi-scale algorithms for data-adaptive detection.
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(ii) Computational efficiency. By scanning over a coarse grid T ⊂ {1, . . . ,n} we greatly reduce

the number of times we must obtain parameter estimates, reducing the complexity to be

sub-linear in the sample size. We then perform a cheap localisation step to obtain accurate

estimators. This is accompanied by a fast implementation combining R and C++.

(iii) Prediction in high dimensions under piecewise-stationarity. We extend the litera-

ture on weighted forecasting in the presence of discrete breaks to two high dimensional

regression settings, which combine to give a competitive method for forecasting real finan-

cial and macroeconomic panels and diffusion indices.

Notation Let R, Z, and N denote the sets of real numbers, integers and natural numbers. We

let O and 0 be a matrix and vector of zeros, respectively, and I p be the p× p identity matrix. Let

‖·‖ denote the Euclidean norm of a vector or the Spectral norm of a matrix, and let ‖·‖F denote

the Frobenius norm. We denote the Kronecker product of two matrices A = [ai j] ∈Rm×n and B, by

A⊗B =


a11B a12B . . . a1nB

a21B a22B
...

...
. . .

am1B . . . amnB

 .

For a sequence of random variables {Xn}n∈N, let Xn
D→ X and Xn

P→ X denote convergence in

distribution and probability, respectively. Let Np denote the p-dimensional normal distribution.

We denote by Γ the Gamma function. Finally, we write a∨b =max(a,b) and a∧b =min(a,b).

5.2 Piecewise stationary models

5.2.1 Piecewise stationary factor VAR model

In this section we discuss the piecewise-stationary factor model with VAR dynamics, contained in

(5.1). The model assumes a specific static representation such that the observations depend only

contemporaneously on the factors, as opposed to the DFM proposed in Forni et al. (2000) which

allows X t to depend on F t at previous lags. The factors follow a piecewise stationary VAR model

F t =


F(1)

t , k0 +1= 1≤ t ≤ k1,

F(2)
t , k1 +1≤ t ≤ k2,

...

F(q+1)
t , kq +1≤ t ≤ kq+1 = n,

(5.3)
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where each {F( j)
t }t∈Z follows a stationary VAR(d) process (in the sense of (2.4), or Equation (2.1.9)

of Lütkepohl (2005)), i.e.

F( j)
t = a jF

( j)
t−1 +ηt, where a j =


a j(1)>

...

a j(r)>

 ∈Rr×dp and F( j)
t−1 =


F

( j)
1,t−1

...

F
( j)
r,t−1

 ∈Rdr

for j = 1, . . . , q+1. Here, F( j)
i,t−1 = (F ( j)

i,t−1, . . . ,F ( j)
i,t−d)> collects the d lagged values of F ( j)

it , the i-th

channel of F( j)
t , and a j(i) collects the parameters involved in predicting the i-th channel. There

are a fixed number q of change points at unknown locations k j, 1 ≤ j ≤ q, which obey a linear

spacing such that k j = bλ jnc for 0=λ0 <λ1 < . . . ,λq <λq+1 = 1, and such that a j 6= a j+1 for all j.

Our aim is to estimate the total number and the locations of the q change points. We assume

{ηt}
n
t=1 is a zero-mean, independent process such that IE(ηt) = 0, Cov(ηt) = S for some positive

definite matrix S ∈Rp×p, and Cov(ηt,ηt′)=O for any t 6= t′.
The measurement equation (5.1) and the state equation (5.3) form a state space model. Ours

generalises the globally stationary representation of the approximate DFM considered for example

in Giannone et al. (2008) and Forni et al. (2009). We note that our model is contained within the

factor-augmented VAR (Bai et al., 2016; Bernanke et al., 2005), though ours is distinguished by

the fact that we do not require identification restrictions for the purposes of forecasting.

Remark 5.1 (Characterising changes). In the most flexible factor models, structural changes

may occur in (a) the loadings, (b) the (auto)correlation structure, or (c) the factor number. As

discussed in e.g. Barigozzi et al. (2018), Appendix A, and Duan et al. (2023), these changes are

not identifiable from the data; we discuss their representation by (5.1) and (5.3) as follows.

(a) Rotational changes in the loadings, where the rank of the factor series is equal before

and after the change, can be represented by a rotation in the factor space. Suppose that

for t = 1, . . . ,k1 we have χ(1)
t = Λ(1)F(1)

t and for t = k1 +1, . . . ,n we have χ(2)
t = Λ(2)F(z,2)

t ,

where Λ(2) =Λ(1)Z for some nonsingular Z ∈ Rr×r, and F(z,2)
t is the latent series. We can

define the factors of interest as F(2)
t = ZF(z,2)

t , and hence we have a representation with

a constant loading matrix. Since F(z,2)
t =∑d

l=1 A(z,2)
l F(z,2)

t−l +ηt, we have the representation

F(2)
t =∑d

l=1 A(2)
l F(2)

t−l +Zηt where A(2)
l = ZA(z,2)

l .

(b) Changes in the autocorrelation structure will be accounted for in the autoregression

parameters in (5.3). We may allow S, the covariance for the innovation process, to change,

but these will not be detectable. We could extend the methodology to include S in the

estimating function (see Section 5.3.1) to account for this.

(c) If the factor number changes, we would need to represent the newly-arriving (or leaving)

factor as a degenerate variable outside of any active regime. This violates Assumption 5.1

(ii), and so cannot be represented. Indeed, any change which enlarges the factor space over

the whole sample cannot be represented by our model.
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5.2.2 Piecewise stationary factor-augmented regression model

Recalling (5.2), yt, t = 1, . . . ,n are generated as

yt = y( j)
t = z>

t β j +εy
t (5.4)

for ky
j−1+1≤ t ≤ ky

j , where j = 1, . . . , qy+1. As in (5.3), the number qy and locations ky
j = bλy

j nc,1≤
j ≤ qy of changes are unknown and to be estimated from the data. As noted, the number and

locations need not be the same as q and k j,1 ≤ j ≤ q, which allows for potentially strongly

divergent structures between yt and the components of X t, as well as a very flexible forecasting

model.

Remark 5.2 (Nowcasting). The factor-augmented regression model can be generalised to the

case where yt is sampled at a lower frequency than X t, for example quarterly samples relative to

monthly samples. This is relevant for the nowcasting problem (Bańbura et al., 2013), and the

model can be used to produce intra-period forecasts and nowcasts. Under infrequent sampling we

may only have enough data to assume stationarity of the regression relationship (i.e. qy = 0).

5.3 Methodology

5.3.1 Data segmentation methodology

We now propose a method to detect change points for the model described in (5.1)–(5.3). The

idea is to first recover the factor series (up to rotation) by using Principal Components Analysis

(PCA) on the sample covariance matrix, selecting the first r ≤ p components. We then supply

the resulting series to the mosumvar algorithm proposed in Chapter 4. Moving sum (MOSUM)

procedures aim to detect and locate changes the expectation of a given series, comparing sums

over G-length intervals before and after a candidate change point k ∈ {G, . . . ,n−G}. Similar

moving window-based approaches have been used in, for example, Bauer and Hackl (1980); Cho

and Owens (2022); Eichinger and Kirch (2018); Hušková (1990); Preuss et al. (2015b); Yau and

Zhao (2016). We formally describe the procedure in Algorithm 5.

Algorithm 5: mosumfvar: Moving window data segmentation under a factor VAR model
input :Data {X t}n

t=1, Bandwidth G, Threshold D, VAR order d, Factor number r
initialise :K̂ =;
Step 1: Recover Λ̂, F̂ t = (F jt,1≤ j ≤ r)> for t = 1, . . . ,n using PCA
Step 2: K̂ ← mosumvar({F̂ t}n

t=1,G,D,d) (Algorithm 6)
return K̂

Step 1: Factor analysis For the sample covariance matrix Γ̂x = n−1 ∑n
t=1 XtX>

t , let ŵx, j denote

the normalised eigenvector corresponding to its j-th largest eigenvalue µ̂x, j, with its entries
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ŵx,i j, i = 1, . . . , p. Then, for a given number of factors r ≥ 1, the factors are estimated by F̂t =(
F̂1t, . . . , F̂rt

)>, up to an orthogonal rotation matrix R with F̂ jt = ŵ>
x, jXt/

pp . Then, the common

components are estimated by χ̂it =∑r
j=1 λ̂i jF̂ jt with the estimated loadings λ̂i j =pp ŵx,i j, and

the idiosyncratic components by ε̂it = X it− χ̂it. If r is unknown, we may instead use a data-driven

choice r̂ (see Section 5.5.3).

Step 2: VAR model segmentation We look for changes in the second-order structure of F t by

detecting changes in the parameters of the VAR structure of F̂ t. By the mosumvar methodology

of Chapter 4, this amounts to finding changes in the expectation of an estimating function. We

specify the estimating function

H t(ã)= H
(
F̂ t, F̂t−1, ã

)=−(F̂ t − ãF̂t−1)⊗ F̂t−1,

which corresponds to the least squares objective, for estimated factors, where ã is a data-

dependent inspection parameter. We scan the data with the score detector

T̂k(G, ã)= 1p
2G

∥∥∥(Σ̂k(ã))−1/2m̂k(G, ã)
∥∥∥ , for k =G, . . . ,n−G, where (5.5)

m̂k(G, ã)=
k+G∑

t=k+1
H t(ã)−

k∑
t=k−G+1

H t(ã),

and Σ̂k(ã) is an estimator for Σ( j)(ã) = Cov(H(X ( j)
1 ,X( j)

0 , ã)) for k j + 1 ≤ k ≤ k j+1. We discuss

the selection of Σ̂k(ã) in Appendix C.1.1.1. Consider the maximum detector statistic T̂(G, ã)=
maxG+d≤k≤n−G T̂k(G, ã). With this, we test the null hypothesis of no change, H0 : q = 0, against

the alternative H1 : q ≥ 1:

Reject H0 if T̂(G, ã)> D(G,α). (5.6)

Here, the critical value D(G,α) is derived from the asymptotic null distribution of T̂(G, ã) at a

given significance level α ∈ (0,1), see Assumption 5.10 below.

When H0 is rejected, there is evidence for one or more change points, and we wish to estimate

their number and locations. With an appropriately chosen ã, we expect T̂k(G, ã) to take large

values around the change points. As such, we estimate k j with the locations of significant local

maximisers. To automatically identify these, we adopt a criterion proposed in Eichinger and

Kirch (2018). We consider all pairs of indices
(
v j,w j

)
such that for some ε ∈ (0,1/2),

T̂k(G, ã)≥ D (α,G) for v j ≤ k ≤ w j, and

T̂k(G, ã)< D (α,G) for k = v j −1,w j +1,
(5.7)

with w j −v j ≥ εG. We take the number of these pairs as an estimator for the number of changes:

q̂ = q̂(ã)= number of pairs
(
v j,w j

)
,
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and for each j = 1, . . . , q̂, we estimate the location of a change point by

k̂ j = k̂ j(ã)= argmaxv j≤k≤w j
T̂k(G, ã).

The procedure is presented in Algorithm 6. Define the estimator

âw = (
n∑

t=1
wtF̂t−1F̂

>
t−1)−1(

n∑
t=1

wtF̂t−1F̂>
t ) (5.8)

where wt are estimator weights. When the factors are observed, Chapter 4 suggests to use

ã= â1,n, the estimator uniquely solving
∑n

t=1 H t(â1,n)= 0, which is equivalent to (5.8) with wt = 1

for all t = 1, . . . ,n.

Algorithm 6: mosumvar: Moving sum data segmentation under a VAR model

input : Data {F̂ t}n
t=1, Bandwidth G, Threshold D, VAR order d

initialise :K̂ =;
Compute inspection parameter ã= â1,n
Calculate T̂k(G, ã),k =G+d, . . . ,n−G as in (5.5)
if T̂(G, ã)> D then

Locate K̂ ← {k̂ j,1≤ j ≤ q̂} according to (5.7)
return K̂

Step 3: Regression model segmentation Let ẑt =
(
F̂>

t ,u>
t

)>
. Here, the observed estimating

function is

H y (
yt, ẑt, β̃

)=−(yt − ẑ>
t β̃)ẑt.

The detector here is

T̂ y(G, β̃)= max
G≤k≤n−G

T̂ y
k (G, β̃), T̂ y

k (G, β̃)= 1p
2G

∥∥∥(Σ̂y
k(β̃))−1/2m̂k(G, β̃)

∥∥∥ ,

where Σ̂y
k(β̃) is an estimator for Σy

( j)(β̃)=Cov(H(y1, z( j)
1 , β̃)) for ky

j +1≤ k ≤ ky
j+1. We discuss the

selection of Σ̂y
k(β̃) in Appendix C.1.2. The difference vector at time k, evaluated with inspection

parameter β̃, is

m̂y
k(G, β̃)=

k+G∑
t=k+1

H y (
yt, ẑt, β̃

)− k∑
t=k−G+1

H y (
yt, ẑt, β̃

)
.

The segmentation procedure is then similar to Step 2; see Algorithm 7. Define the estimator

β̂w = (
n∑

t=1
wt ẑt ẑ>

t )−1(
n∑

t=1
wt ẑt yt). (5.9)

We may choose β̃= β̂1,n, the estimator uniquely solving
∑n

t=1 H y(yt, ẑt, β̂1,n)= 0, which equivalent

to (5.9) with wt = 1 for all t = 1, . . . ,n.
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Algorithm 7: mosumlm: Moving sum data segmentation under a linear regression model

input : Data {F̂ t}n
t=1, Bandwidth G, Threshold D

initialise :K̂ y =;
Compute inspection parameter β̃= β̂1,n
Calculate T̂ y

k (G, β̃),k =G, . . . ,n−G
if T̂ y(G, β̃)> D then

Locate K̂ y ← {k̂y
j ,1≤ j ≤ q̂y} similarly to (5.7)

return K̂ y

5.3.1.1 Extensions

In Chapter 4, we propose a range of methodological extensions which can also be used in combi-

nation with Step 2. While these are proposed for use with the VAR segmentation methodology,

they can be applied just as easily to regression segmentation.

Grid-based procedure We can reduce the procedure’s computational complexity (see Sec-

tion 5.5.1) by evaluating the detector not on the whole sample, but on a coarse grid

T (r,G)=
{

t : t =G+d+mbrGc,0≤ m ≤
⌊

n−2G
rG

⌋}
.

for some constant r ∈ [G−1,1]. After scanning over the grid, intervals with detectors exceeding

the threshold are filled in with score statistics with a inspection parameter calculated over each

contiguous significant interval.

Multiscale algorithm The theory justifying our method relies on Assumption 5.7, where the

chosen bandwidth G becomes small enough asymptotically such that each change point will

be isolated within a window of length 2G. This suggests we want to select G to be as large as

possible so that this holds, as to maximise detection power and give the best possible location

estimators. The true minimum spacing between changes is always unobservable, however, and

often hard to make reasonable prior choices for in practice. Moreover, multiscale changes may

be present in the data, where large frequent and small infrequent changes occur in the same

series. To account for these issues, we propose a bottom-up multiscale algorithm which runs the

single-scale procedure with bandwidths of increasing size and merges the resulting sets of change

point estimates. Similar ideas are proposed in Messer et al. (2014) and Meier et al. (2021) for the

mean-change problem.

Define the bandwidth set G = {Gh, 1≤ h ≤ H : G1 < . . .<GH} with strictly increasing elements.

The null hypothesis is rejected if any of test statistics evaluated with bandwidth Gh ∈G exceed

their respective thresholds D(Gh,α). For the smallest bandwidth at which we reject, we take

the estimated change points as the initial set of changes. For each subsequent bandwidth Gh′ , a
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detected point is added to the set only if the point is at least πGh′ away from any point already in

the change point set, for some π ∈ (0,1). We formalise this in Algorithm 8.

Algorithm 8: Multiscale MOSUM Algorithm

input :Data {F̂ t}n
t=1, Bandwidth set G , Threshold set {D(Gh,α),h = 1, . . . ,H},

Localisation parameter π
initialise :K̂ =;
Compute inspection parameter ã= â1,n for h = 1, . . . ,H, do

Calculate T̂k(Gh, ã) as in (5.5)
if T̂(Gh, ã)> D(Gh,α) then

Locate K̂ (Gh)← {k̂ j(Gh),1≤ j ≤ q̂h} with (5.7)
for k̂ j ∈ K̂ (Gh) do

if mink∈K̂ |k̂ j(Gh)−k| ≥ εGh then
add k̂ j(Gh) to K̂

end
end
return K̂

Recursive segmentation As discussed in Remark 4.1, when using the MOSUM score proce-

dure with a global inspection parameter, there may exist changes which are not detectable in

the sense of Assumption 5.8. By combining the MOSUM score procedure with the Binary Seg-

mentation (BS) algorithm (Vostrikova, 1981), we recursively apply the MOSUM score procedure

with data-dependent inspection parameters, giving a procedure which asymptotically detects all

change points.

Algorithm 9 describes the MOSUMBS algorithm. For a given segment {s, . . . , e} for some

1≤ s ≤ e ≤ n, a local parameter estimator âs,e is obtained as in (5.8) (computed only over the local

sample) with which the MOSUM score procedure is performed and change point estimators are

added to K̂ . This is repeatedly performed on the segments defined by the consecutive elements

of K̂ until no further change point is detected. Initialised with (s, e)= (1,n) and K̂ =;, the call

MOSUMBS(k̂ j +1, k̂ j+1,D,G,K̂ ) returns the final set of estimators.

5.3.2 Forecasting

Having obtained estimates for break points in the model, it remains to produce forecasts or

nowcasts. With access to population quantities, the optimal h-step ahead forecast at time k j−1+1≤
t ≤ k j is

X t+h|t =ΛF( j)
t+h|t, (5.10)

where F( j)
t+1|t = a jF

( j)
t . For h ≥ 2, this can be defined recursively. For yt, we have

yt+h|t = (z( j)
t+h|t)

>β j, (5.11)
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Algorithm 9: MOSUMBS(s, e,D,G,K̂ ) Recursive Segmentation Algorithm
input : Start and end indices s and e, Threshold D, Bandwidth G, Change point set

K̂

if e− s > 2G then
Compute parameter âs,e

Compute statistic T̂ ←maxs≤k≤e T̂k(G, âs,e) as in (5.5)
if T̂ > D then

Locate K̂s,e ← {k̂ j : s = k̂0,s,e +1< k̂1,s,e < ·· · < k̂ q̂s,e,s,e < e = k̂ q̂s,e+1,s,e} with (5.7)
Update global change point set K̂ ← K̂ ∪K̂s,e
for j = 1, . . . , q̂s,e +1 do

MOSUMBS(k̂ j−1,s,e +1, k̂ j,s,e,D,G,K̂ )
end

end
return K̂

where z( j)
t+h|t =

(
(F( j)

t+h|t)
>,u>

t+h

)>
. With h = 0, this defines a nowcast, as per Remark 5.2. In general

for h ≥ 0, we do not have access to ut+h nor a corresponding forecasted version, so we study the

case where zt+h|t = F t+h|t. We define the sample versions of (5.10) and (5.11) as

X̂ t+h|t = Λ̂F̂ t+h|t, and ŷt+h|t = F̂>
t+h|tβ̂, (5.12)

where F̂ t+1|t = âF̂t. We can obtain Λ̂ and F̂ t with PCA as per Step 1 of Section 5.3.1. The problem

then is to obtain weighted estimators âw in (5.8) and β̂w in (5.9) with which to produce forecasts.

Under piecewise stationarity we use a weighting scheme, as per Pesaran et al. (2013), which

accounts for the presence of change points. Using only data from the most recent estimated

segment will produce an unbiased parameter estimate, and hence an unbiased forecast. However,

when the most recent segment is short, the estimator and the forecast will have high variance.

The weighting schemes introduce a small amount of bias into the forecast in exchange for a

reduction in the variance. Moreover, uncertainty in the location of the true change point can

amplify the bias and inefficiency problems, and so we can design our weights to account for

this. The forecast error-optimal weights are not analytically available, so we consider the weight

choices in Table 5.1, where the Linear and Robust schemes are as proposed in Pesaran et al. (2013).

We ignore observations before k̂ q̂−1 for simplicity. These are normalised so that wt = w̃t/
∑n

t=1 w̃t.

5.4 Theoretical results

In this section, we make modelling assumptions and derive consistency properties of the data

segmentation procedure.
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Table 5.1: Forecast weight choices for weighted estimators âw (5.8) and β̂w (5.9).

Title Weight w̃t Description

Expanding 1 The entire dataset.

Current Ik̂+1≤t≤n Data after the most recent
change point.

Linear Ik̂+1≤t≤n + t−k̂ q̂−1

k̂ q̂−k̂ q̂−1
Ik̂ q̂−1+1≤t≤k̂ q̂

Linearly decaying weights between

the last two estimated change points.

Robust Ik̂+1≤t≤n + [
log(1−t/k̂ q̂)

log(1−(k̂ q̂−1)/k̂ q̂)
∨1] · Ik̂ q̂−1+1≤t≤k̂ q̂

Robust weights between the

last two estimated change points.

Rolling In−N+1≤t≤n A window of fixed length.

5.4.1 Assumptions

5.4.1.1 Factor model assumptions

Assumption 5.1 (Latent series error distribution). (i) IE(ηt)= 0.

(ii) Cov(ηt)= S for some positive definite matrix S ∈Rr×r.

(iii) ηt and ηt′ are independent for t 6= t′, so Cov(ηt,ηt′)=O.

(iv) There exist constants cη,bη ∈ (0,∞) such that for any z > 0 and j = 1, . . . , r, we have P(|ηit| >
z)≤ exp(1− (z/cη)bη).

(v) For each j = 1, . . . , q+1, there exists ν̃> 0 such that 0< IE‖F( j)
1 ‖4+ν̃ <∞.

Remark 5.3 (Factor distribution). By Wold’s Decomposition Theorem, each F( j)
t , j = 1, . . . , q+1, t =

1, . . . ,n admits a moving average representation

F( j)
t =

∞∑
l=0

B( j)
l ηt−l ,

where B( j)
l is square-summable over l ∈N, and B( j)

0 = I r. Hence,

(i) For each j = 1, . . . , q+1, and each `= 0,1,2, . . . , Cov(F( j)
t ,F( j)

t+`)=∑∞
l=0 B( j)

l S(B( j)
l+h)> =Γ( j)

F (`)

for some matrix Γ( j)
F (`) ∈Rr×r. We have Γ( j)

F (−`)= (Γ( j)
F (`))>, and we denote the covariance

Γ
( j)
F (0)=Γ( j)

F .

(ii) There exist constants cF ,bF ∈ (0,∞) such that for any z > 0 and i = 1, . . . , r, we have

P(|Fit| > z)≤ exp(1− (z/cF )bF ).

Assumption 5.2 (Loadings). (i) There exists a positive definite r× r matrix L with distinct

eigenvalues such that n−1Λ>Λ→ L as n →∞.

(ii) There exists λ̄ ∈ (0,∞) such that |λi j| ≤ λ̄ for all i, j.
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Assumption 5.3 (Idiosyncratic component). (i) There exists a constant Cε such that

max
1≤s≤e≤n

1
e− s+1

‖
e∑

t=s
IE(εtε

>
t )‖ < Cε.

(ii) There exist constants cε,bε ∈ (0,∞) such that for any z > 0 and i = 1, . . . , p, we have P(|εit| >
z)≤ exp(1− (z/cε)bε).

Assumption 5.1 controls the innovation process for the latent VAR, requiring independent

white noise behaviour and exponential-type tails, and Remark 5.3 summarises the autocovari-

ances and tail behaviour of the factor series. Assumption 5.1 (v) would hold as a consequence

of (iv) and a further assumption on the autoregression parameter permitting a moving average

representation with absolutely summable coefficients, by Lemma E.1 of Barigozzi et al. (2023).

Assumption 5.2 controls the factor loadings, and is standard in the literature; see for example

Barigozzi (2022). Assumption 5.3 controls the innovation process for the factor model, allowing

for second-order non-stationarity (i.e. heteroscedasticity) and exponential-type tails.

Remark 5.4 (Eigenvalues). Under Assumptions 5.1–5.3, we can describe the behaviour of the

population eigenvalues. Define

Γχ =ΛΓFΛ
>, ΓF = 1

n

q+1∑
j=1

(k j −k j−1)Γ( j)
F , Γε = 1

n

n∑
t=1

IE(εtε
>
t ),

and Γx =Γχ+Γε, and denote the eigenvalues (in non-decreasing order) of each respectively as

µx,i,µχ,i, and µε,i. Then

(i) There exist constants γ, γ̄ such that for each i = 1, . . . , r,

0< γ< lim
n→∞ inf

µχ,i

p
≤ lim

n→∞sup
µχ,i

p
< γ̄<∞.

(ii) µε,1 < Cε.

(iii) µx,i, i = 1, . . . , r diverge linearly as p →∞.

(iv) µx,r+1 is bounded.

Assumption 5.4 (Dimension). p →∞ as n →∞ such that n = O(p2) and p = O(nκ) for some

1/2≤ κ<∞.

Remark 5.4 indicates we will obtain good estimation results when p grows large relative to n,

suggesting the polynomial growth in Assumption 5.4.

Assumption 5.5 (Joint distribution). (i) {ηt}
n
t=1 and {εt}n

t=1 are independent.
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(ii) Let F e
s be the filtration of the sequence {(ηt,εt)}e

t=s. Defining

α(n)= sup
j∈N

sup
A∈F

j
1 ,B∈F∞

j+n

|P(A∩B)−P(A)P(B)|,

there exist constants ca,b ∈ (0,∞) such that 3min{b−1
F ,b−1

ε }+b−1 > 1, and α(n)≤ exp(−canb).

Assumption 5.5 controls the requires the innovation processes to be independent and α-

mixing.

Assumption 5.6 (Regression). Let z( j)
t =

(
(F( j)

t )>,u>
t

)>
for j = 1, . . . , q+1.

(FAR1) {εy
t }n

t=1 is i.i.d. with IE(εy
t )= 0,IE((εy

t )2)=σ2 <∞.

(FAR2) {z( j)
t }n

t=1 and {εy
t }n

t=1 are independent for j = 1, . . . , q+1.

Assumption 5.6 places independent white noise restrictions on the innovation series of the

diffusion index.

5.4.1.2 Segmentation assumptions

Assumption 5.7 (Bandwidth). Let the bandwidth G depend on n, i.e. G =G(n).

(a) For ν̃> 0 assume that

n
G

→∞ and
n

2
2+ν log(n)

G
→ 0 for n →∞.

(b) The minimum distance between change points is larger, as n →∞, than 2G, so that

(i) lim inf
n→∞ min

j=1,...,q+1

k j −k j−1

G
> 2

and

(ii) lim inf
n→∞ min

j=1,...,qy+1

ky
j −ky

j−1

G
> 2.

Assumption 5.8 (Jump size). (a) For j = 1, . . . , q, define the jump size as δ j(ã) = ‖d j(ã)‖,

where

d j(ã)= IE
(
H(F( j+1)

t ,F( j+1)
t−1 , ã)

)− IE
(
H(F( j)

t ,F( j)
t−1, ã)

)
. (5.13)

As n →∞, we let min1≤ j≤qδ j(ã)> cδ(n)> 0, where cδ(n) ·
√

G
log(n/G) →∞.

(b) For j = 1, . . . , qy, define the jump size as δy
j (β̃)= ‖d y

j (β̃)‖, where

d y
j (β̃)= IE

(
H y(y( j+1)

t , zt, β̃)
)− IE

(
H y(y( j)

t , zt, β̃)
)
. (5.14)

As n →∞, we let min1≤ j≤qy δ
y
j (β̃)> cδ(n)> 0, where cδ(n) ·

√
G

log(n/G) →∞.
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Assumption 5.7 requires that the bandwidth for the MOSUM procedure grows with respect to

the sample size and the number of moments, and guarantees that, asymptotically, a detector at

any k =G, . . . ,n−G draws observations from at most two regimes. Assumption 5.8 requires that

the size of each jump is non-zero and possibly shrinking. Together, these assumptions define the

separation rate 2Gc2
δ
, which lower bounds the signal-to-noise ratio min1≤ j≤qδ

2
j ·min0≤ j≤q(k j+1 −

k j), or for the regression setting, min1≤ j≤qy(δy
j )

2 ·min0≤ j≤qy(ky
j+1 −ky

j ).

Assumption 5.9. Define cα =− loglog(1−α)−1/2 to be the (1−α) quantile of the Gumbel type 2

distribution. Let the sequence {αn}n∈N fulfil

αn → 0 and
cαn

a(n/G)
p

G
= o(1).

Assumption 5.10. Let the threshold D be such that

D(G,α)= b(n/G)+ (cα+ cD log4v(n))
a(n/G)

for cD > 0, where

a(x)=
√

2log(x) , and b(x)= 2log(x)+ d

2
log(log(x))− log

(
2
3
Γ

(
d

2

))
.

In the VAR case, we have d= r2d, and in the regression case, d= r.

Assumption 5.9 is a technical condition in which the significance level is not fixed but

converging to 0. Assumption 5.10 controls the threshold for the MOSUM procedure.

5.4.1.3 Estimator assumptions

Assumption 5.11. The estimator Σ̂k(ã) of the covariance matrix Σk(ã) satisfies

(a)

max
G≤k≤n−G

∥∥∥(Σ̂k(ã))−1/2
∥∥∥

F
=OP (log2v(n)).

(b) For any j = 1, . . . , q it holds that

max
k:|k−k j |<G

∥∥∥(Σ̂k(ã))1/2
∥∥∥

F
=OP (log2v(n)).

Assumption 5.12. The estimator Σ̂y
k(β̃) of the covariance matrix Σy

k(β̃) satisfies

(a)

max
G≤k≤n−G

∥∥∥(Σ̂y
k(β̃))−1/2

∥∥∥
F
=OP (log2v(n)).

(b) For any j = 1, . . . , qy it holds that

max
k:|k−ky

j |<G

∥∥∥(Σ̂y
k(β̃))1/2

∥∥∥
F
=OP (log2v(n)).
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Assumption 5.13. (a) ‖ã‖ =O(1). (b) ‖β̃‖ =O(1).

Assumptions 5.11 and 5.12 require that Σ̂k(ã) (respectively Σ̂y
k(β̃)) is a sufficiently good

estimator of Σk(ã) (respectively Σy
k(β̃)), in the sense that the size does not diverge too quickly.

By Remark 3.4 of Kirch and Reckrühm (2022), we do not need that the estimator is uniformly

consistent away from change points when Assumption 5.10 holds. Assumption 5.13 requires that

the inspection parameter is bounded in size.

5.4.2 Factor consistency

Our goal is to demonstrate that the factor analysis procedure (Step 1 of Section 5.3.1) consistently

recovers the factors, and that the difference between the sample-estimated and latent population

statistic is bounded. In Proposition 5.1 we show that asymptotically, we select the correct factor

number r. Using this, Lemma 5.1 establishes a bound on the difference between the factor-

recovered and true detector series for the piecewise stationary factor VAR, which implies we can

use the estimated series for change point detection. Lemma 5.2 does the same for the piecewise

factor-augmented regression model.

Proposition 5.1. Let g(n, p)→ 0 as n →∞ while (p∧n)·g(n, p)→∞. Under Assumptions 5.1–5.5,

r̂ returned by (5.16) satisfies P(r̂ = r)→ 1.

Lemma 5.1. Let the conditions of Proposition 5.1 hold. Let Assumption 5.11 hold for Σ̂k, and

Assumption 5.13 (a) hold for some ã. Then,

max
G≤k≤n−G

|T̂k(G, ã)−Tk(G, ã)| =OP (log4v(n)).

Lemma 5.2. Let the conditions of Proposition 5.1 hold, as well as Assumption 5.6. Let Assump-

tion 5.12 hold for Σ̂y
k, and Assumption 5.13 (b) hold for some β̃. Then,

max
G≤k≤n−G

|T̂ y
k (G, β̃)−T y

k (G, β̃)| =OP (log4v(n)).

As per Lemma C.7, the results of Lemmas 5.1 and 5.2 depend on the existence of an r× r-

orthogonal matrix R, and the consistency holds up to a rotation by R in the factor space.

5.4.3 Segmentation consistency

Theorem 5.3 demonstrates that the data segmentation procedure for the piecewise stationary

factor VAR model is consistent when the factor series is latent. These results are inherited from

the results for observed series given in Chapter 4. In Theorem 5.4 we give a similar result for the

regression model.

Theorem 5.3 (VAR segmentation consistency). Let the conditions of Lemma 5.1 hold. Let

Assumptions 5.7–5.10 hold. Then we have that
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(a)

P

(
q̂ = q; max

1≤ j≤q
|k̂ j −k j| <G

)
→ 1

as n →∞.

(b) The result holds using the least squares estimator â1,n in (5.8), or an estimator Σ̂k(ã) as

in (C.1.1) in place of the true Σk(ã).

Theorem 5.4 (Regression segmentation consistency). Let the conditions of Lemma 5.2 hold. Let

Assumptions 5.7–5.10 hold. Then we have that

(a)

P

(
q̂y = qy; max

1≤ j≤qy
|k̂y

j −ky
j | <G

)
→ 1

as n →∞.

(b) The result holds using the least squares estimator β̂1,n in (5.9), or an estimator Σ̂y
k(β̃) as

in (C.1.8) in place of the true Σy
k(β̃).

Remark 5.5 (Localisation rate). Due to the latency of the factor series, we cannot localise changes

at the rate presented in Kirch and Reckrühm (2022). It may be possible to derive a localisation

rate which depends on the error bounds in Lemmata 5.1–5.2, giving tighter localisation than

parts (a) of Theorems 5.3–5.4.

5.5 Computation

In this section we discuss computational aspects of the method.

5.5.1 Complexity

Table 5.2 lists the time complexity of procedure/estimator combinations. We let Assumption 5.7 (a)

hold, and denote the size of G as |G |. We denote the complexity of principal component analysis

with dimensions n and p as PCA(n, p), which is typically O(p2(n∨ p)).

Table 5.2: Computational complexity of proposed factor VAR segmentation procedures (Section 5.3.1).

Procedure Time Complexity

mosumfvar O
(
PCA(n, p)+d2 p2 max(p2,d)+ndp

)
mosumfvar grid-based O

(
PCA(n, p)+d2 p2 max(p2,d)+ n

ρG dp
)

mosumfvar recursive segmentation O
(
PCA(n, p)+ log(n)(d2 p2 max(p2,d)+ndp)

)
mosumfvar multiscale O

(
PCA(n, p)+|G |(d2 p2 max(p2,d)+ndp)

)
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5.5.2 Online segmentation

When using the proposed segmentation methods in practice, we may be in the online setting,

in which new data points arrive in real time. For problems with small dimensions (n, p, r) it is

feasible to simply rerun the segmentation algorithm for each new point that arrives. When the

dimensions are large, however, we are faced with a large computational burden in recalculating

all of the detector statistics. Instead, we may use online updates to the factor decomposition

(Cardot and Degras, 2018).

5.5.3 Tuning parameter selection

Factor number For r, we consider two estimators. We may use the ratio-based estimator

ER(b)= µ̂b/µ̂b+1 (5.15)

of Ahn and Horenstein (2013), selecting r̂ = argmax1≤b≤r̄ ER(b) where r̄ is an upper bound on the

factor number. We may also use the Information Criterion-based estimator proposed by Alessi

et al. (2010), an extension of that proposed in Bai and Ng (2002). We consider

IC(b, c)= log

(
1
p

p∑
j=r+1

µ̂ j

)
+b · c · g(n, p) (5.16)

where c > 0 is a constant, and g(n, p)= (n∧ p)−1 log(n∧ p) is the penalty function; other choices

can be found in Bai and Ng (2002). IC in (5.16) consistently selects r for arbitrary values of c,

so a data-driven method is used for to select r̂ and c simultaneously, wherein r̂ is evaluated for

varying c over a given range, and a value of c is selected in the second region such that r̂ is stable.

See Alessi et al. (2010); Owens et al. (2023) for further details. We prove that this consistently

estimates r in Proposition 5.1.

Threshold In practice we use the threshold

D̃(G,α)=max

{
D(G,α),

√
2log(n) + cα√

2log(n)

}
, (5.17)

where D(G,α) meets Assumption 5.10. With the large values of p for which our method is

designed, we find cD = 0 is a suitable choice.

Order To select the lag order d, we suggest minimising the Schwartz Information Criterion

(SIC)

SIC(d)= n0

2
log

(
1
n0

‖F̂ t − â1,n0[d]F̂t−1[d]‖2
F

)
+d log(n0), (5.18)

for models fit on t = 1, . . . ,n0, where â1,G[d] is the estimator corresponding to F̂t−1[d] consisting

of regressors up to lag d, and n0 < n determines the size of the initial sample. We recommend

setting n0 =G if this is available, and n0 = bn/20c otherwise.
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Bandwidth We set G = G(n, r,d) = exp(c0 − c1 loglog(n)+ c2 loglog(d)) with pre-specified ci >
0, i = 0,1,2 as described in Chapter 4.

Localisation Based on simulation, we recommend localising with ε= 0.3.

5.6 Simulations

In this section, in simulations we validate the finite sample properties of the change point

detection and forecasting methods.

5.6.1 Factor VAR

We evaluate Step 2 of the mosumfvar method (Section 5.3.1) for segmenting and forecasting factor

model dynamics.

5.6.1.1 Data segmentation

First we evaluate mosumfvar in terms of detecting change points. We refer to Chapter 4 for an

extensive investigation of the mosumvar algorithm’s computational properties, particularly those

of the methodological extensions in Section 5.3.1.1. We examine the method under more general

factor models in Appendix C.3.

Metrics When q ≥ 1, we report the distribution of q̂−q. We quantify the quality of the estimated

segmentation using the Covering Metric (CM, Arbelaez et al. (2010); van den Burg and Williams

(2020)) as follows. The true change points {k j}
q
j=1 define a partition P of {1, . . . ,n} into disjoint

sets S j = {k j−1 +1, . . . ,k j}. We denote the estimated equivalents for {k̂ j}
q̂
j=1 as P̂ and Ŝ j. The CM

is then

C (P̂ ,P )= 1
n

∑
S ∈P

|S |max
Ŝ ∈P̂

{
S ∩ Ŝ

S ∪ Ŝ

}
.

We have that C (P̂ ,P ) ∈ [0,1] with 1 denoting a perfect segmentation. When q = 0, we report the

empirical size, i.e. the proportion for which q̂ ≥ 1.

Settings Loadings λii′ ,1≤ i ≤ r,1≤ i′ ≤ p, are generated uniformly on [0.2,0.8]. For the factor

series, under the alternative we simulate from A( j)
l under each regime so that for t = k j +

1, . . . ,k j+1,

F t =
d∑

l=1
A( j)

l F( j)
t−l +εt, (5.19)

while under the null we simulate with parameters A(1)
l , l = 1, . . . ,d for all observations. The pa-

rameters are defined as follows: letting A′ have diagonal entries a′
ii = 0.7 and off-diagonal entries
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a′
ii′ =−0.1, we set A(1)

l = ρ j A′/‖A′‖2
F , for l = 1, . . . ,d, where ρ j ∈ [−1,1] is a scalar controlling the

signal strength. We generate errors so that ηt ∼ Nr(0, I r) and εt ∼ Np(0, I p). We have n = 2000,

d = 1, and q = 3 change points at k1 = 500,k2 = 1000, and k3 = 1500. We set ρ1 =−ρ2 = ρ3 = 0.5.

(V1) We test a design with varying dimensionality p ∈ {25,50,100,150}. We fix r = 3.

(V2) We test a design with a varying factor number r ∈ {2,3,4,5}. We fix p = 100.

(V3) We test a design with heavier-tailed error distributions. We generate errors so that each ηit

and εit is an i.i.d. draw from the normalised t-distribution
p
ν/(ν−2) · tν with ν ∈ {3,5,7}

degrees of freedom. We fix p = 100, r = 3.

Competing methods We use our own method both with automatic parameter selection (select-

ing r with (5.16) and fixing n0 = 100 in (5.18) to select d), and given access to the true parameters,

and we compare to the factor segmentation method proposed by Cho et al. (2022), using the

default tuning parameters.1

Results We report the results in Table 5.3. In Setting (V1), we can see that the method performs

better as p increases. mosumfvar is generally conservative, sometimes lacking power but giving

perfect size control. There is a small loss in performance with automatic tuning parameter

selection, relative to when the parameters are given. fvarseg gives better segmentations, but

does not control size at the nominal level. In Setting (V2), we see that the performance of

mosumfvar improves as r grows. fvarseg is very strong for small r but deteriorates as r grows,

again struggling to control size. Setting (V3) shows mosumfvar is seemingly robust to mild tails,

where large deviations actually improve detection power. fvarseg does not control size but offers

good segmentation here.

5.6.1.2 Forecasting

Next we evaluate our methods for prediction.

Methods For the panel we consider seven forecasting methods. The first two use linear and

robust weights given the true change point and factor number, similarly to Pesaran and Tim-

mermann (2007). The next four methods use linear, robust, and segment weights, based on

change points estimated from the data via the mosumfvar methodology with automatic tuning

parameter selection. We also report forecasts with Expanding weighting, and Rolling weights

with N = 100,200.2

1We attempted to compare to Kim et al. (2021), but the implementation does not offer model selection.
2We also attempted the method of Stock and Watson (2002c), forecasting by regressing yt+1 directly onto F̂ t,

although the results from this were poor and we do not report them.
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Metrics We report for X t+1 the normalised square errors FEavg
x = ‖X̂ t+1|t − X t+1‖2

F /‖X t+1‖2
F ,

normalised absolute errors FEabs
x = ‖X̂ t+1|t−X t+1‖1/‖X t+1‖1, and the normalised maximum error

FEmax
x = ‖X̂ t+1|t − X t+1‖∞/‖X t+1‖∞.

Settings We have n = 450, p = 100, and a change point at k1 = 300. We use a pseudo-real time

design, so that the sample t = 1, . . . ,T for T = 200, . . . ,449 is made available to the segmentation

and forecasting algorithms. We repeat 30 times and average the results. We use the following

models to simulate X t:

(F1) From (5.19) with r = 2 and ρ = 0.7.

(F2) A GDFM with Moving Average loadings (GDFM1).

(F3) A GDFM with Autoregressive loadings (GDFM2).

Results We report the results in Table 5.4. Under Setting (F1), the Current and Rolling

(N = 100) weightings are the best performers. Interestingly, forecasts produced with estimated,

rather than given, change points are often better performers. Under (F2), the Rolling (N = 100)

and Robust oracle methods are best, and under (F3) the Robust oracle method is always best.

5.6.2 Factor-augmented regression

We evaluate Step 3 of the mosumfvar method for factor-augmented regression models.

5.6.2.1 Data segmentation

Settings The factor component simulated from (5.19) under stationarity. The regression data

is generated according to (5.4) with β j = (−1) j−1 ·pr ·(1, . . . ,1)> ∈Rr. Each ε
y
t is an i.i.d. draw from

a standard Normal distribution. We have n = 1000, and under the alternative we have qy = 3

change points at ky
1 = 250,ky

2 = 500, and ky
3 = 750. We compare to the moseg algorithm of Cho

and Owens (2022), designed for detecting changes in sparse regression parameters. The default

tuning parameters are used.

(R1) We test a design with varying dimensionality p ∈ {100,200,300,400}. We fix r = 4.

(R2) We test a design with a varying factor number r ∈ {2,4,6,8,10}. We fix p = 100.

(R3) We test a design with heavier-tailed error distributions. We generate errors so that each ηit,

εit, and εy
t is an i.i.d. draw from the normalised t-distribution

p
ν/(ν−2) · tν with ν ∈ {3,5,7}

degrees of freedom. We fix p = 100, r = 2.
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Results We report results in Table 5.5. Under Setting (R1), the method performs consistently

well for p = 200 or greater. There is a loss in performance for p = 100 with automatic selection

due to the performance of the IC factor number selection method. moseg struggles as expected as

it is not designed for strong correlations. Under (R2), there is a lack of detection power for r = 2,

and IC struggles for r = 10. There is a very strong performance for mosumfvar when the number

of factors is large. Under (R3) there is a lack of power for the heaviest tails but performance is

reasonable for milder tails.

5.6.2.2 Forecasting

Settings We have n = 450, p = 100, and change points at ky
1 = 250 and ky

2 = 350. We use a

pseudo-real time design, so that the sample t = 1, . . . ,T for T = 200, . . . ,449 is made available to

the segmentation and forecasting algorithms. We repeat 30 times and summarise the results. To

simulate X t, we use Settings (F1), (F2), and (F3), with no change points in the factor structure.

The regression data is generated according to (5.4) with β j = (−1) j−1 ·pr · (1, . . . ,1)> ∈Rr, fixing

r = 2.

Metrics For yt+1, we report the square error FEavg
y = ( ŷt+1|t− yt+1)2, the absolute error FEabs

y =
| ŷt+1|t − yt+1|, and the sign error FEsign

y = I[sign( ŷt+1|t) 6= sign(yt+1)].

Results We report results in Table 5.6. Clearly the Rolling (N = 200) method is in general the

strongest performer, though our methods are competitive in many metrics. We note that the

metrics here are not on the same scale as each other.

5.7 Application to real data

In this section, we use our methods for data segmentation and forecasting on real macroeconomic

data. We use the FRED-MD database proposed in McCracken and Ng (2016). The constituents

are indicators covering e.g. the labour market, prices, and financial markets in the United States.

The series are transformed as per the paper, e.g. with differencing or by taking logarithms, to

attain stationarity. All series are observed monthly, and we have data from 1961:06-2019:12,

meaning we have n = 703 and p = 122. The logarithm of the excess return of holding an N-year

bond (b(N)) from month t−24 to t, when its remaining maturity is N −1 as 24 months have

passed, can then be expressed as

xr(N)
t =−(N −1)(b(N−1)

t −b(N)
t−24)+ (b(N)

t−24 −b(1)
t−24),

as used in Liu and Wu (2021)3. We use the panel to model xr(2)
t , the US government bond risk

premium at N = 2 years, using a factor-augmented regression. Massacci (2019) analyse a similar

3Data are available at https://sites.google.com/view/jingcynthiawu.
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Figure 5.1: FRED-MD panel with stationarity transforms studied in Section 6.6.2. Estimated changes in
the VAR structure are denoted by dashed lines.

dataset for a single break, covering 1965:01–2007:12, while Giovannelli et al. (2021) consider a

similar panel for forecasting the equity premium, accounting for breaks in a factor model.

5.7.1 Data segmentation

First, we use our segmentation methods on the entire dataset. Using IC (5.16) we find r̂ = 5 factors.

For comparison, Stock and Watson (2012) select r = 5 a priori on a shorter dataset, while Massacci

(2019) use r = 2. In the VAR structure we find q̂ = 3 three changes, dated 1981:09, 1991:03, and

2008:06, plotted in Figure 5.1. These can be corresponded to significant events, namely the oil

shock, the 1990 western recession, and the 2008 global financial crisis. The fvarseg method of

Cho et al. (2022) returns q̂ = 5 changes at 1969:10, 1978:02, 1984:08, 2005:8, and 2013:5. In other

studies, Cheng et al. (2016) locate a single change in 2007, while on quarterly data, Barigozzi

et al. (2018) find changes in 1983, 2007, and 2009.

In the predictive regression for the bond risk premium, we find q̂y = 2 changes, dated 1981:01

and 2008:10, plotted in Figure 5.2. These are similarly located to changes k̂1 and k̂3 in the VAR

structure. These results complement the single break found in Massacci (2019) when N = 5.

5.7.2 Forecasting

Setting We aim to predict the excess bond return xr(2)
t+1|t, and the panel X t+1|t. We perform

the same pseudo-real time exercise as in Section 5.6.1.2, so that the sample t = 1, . . . ,T for T =
200, . . . ,761 is made available to the segmentation and forecasting algorithms. We estimate r using
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Figure 5.2: Excess bond return xr(2)
t studied in Section 6.6.2. Estimated changes in the factor-augmented

regression structure are denoted by dashed lines.

IC at each time step, but fix the order d = 1 to ensure stability and prevent the dimensionality

growing too large.

For X t+1|t, similarly to the exercise in Giovannelli et al. (2021) for stock returns, we compare

to forecasts from a GDFM. Using the implementation of Owens et al. (2023), we report forecasts

using the following methods: (i) Restricted forecasts from a static model as per Stock and Watson

(2002a) (SW); (ii) Restricted forecasts from a dynamic model as per Forni et al. (2000) (FHLR);

(iii) Unrestricted forecasts from a dynamic model as per Forni et al. (2015, 2017) (FHLZ). Tuning

parameters are automatically selected by the package defaults.4

Results We report the results for X t+1|t in Table 5.7, and plot them in Figures 5.3–5.4 subtract-

ing the expectation from each metric to highlight the relative performance over time. We plot

the weighted and GDFM methods separately as the former set almost uniformly outperform the

latter set. The GDFM methods often have lower forecast variance, but only FHLR is competitive

in point estimation. The forecasts for X t+1|t are clearly correlated across the weighted methods.

Using the current segment tends to perform poorly, as we would expect. Rolling window methods

perform well, though the best performers are always our adaptively-weighted methods. The

superior predictive power becomes clearer as time continues.

Our stated goal is for our algorithms to outperform the rolling windows method, as this is

widely used, simple to implement and interpret, and has a low computational cost. We can clearly

say this is true for the panel forecasting method.

4We attempted to compare to the method of Massacci and Kapetanios (2023) for xr(2)
t+1|t though this requires the

knowledge of the location of a single structural break for fair comparison.

102



5.8. CONCLUSION

Time

Er
ro

r

0 100 200 300 400 500

-5
0

-3
0

-1
0

Time

Er
ro

r

0 100 200 300 400 500

-3
5

-2
5

-1
5

-5

Time

Er
ro

r

0 100 200 300 400 500

-6
-4

-2
0

linear
robust
current
expanding
rolling100
rolling200

Figure 5.3: Cumulative relative forecast errors (FEavg
x − t,FEabs

x − t and FEmax
x − t respectively) for X t+1|t,

using weighting methods from Table 5.1, for the FRED-MD data described in Section 6.6.2. Each colour
corresponds to a different forecast weighting method. Solid lines denote methods accounting for change
points, while dashed lines denote those which do not.

We report forecasting results for xr(2)
t+1|t in Table 5.8, and Figure 5.5 (again adjusting for

t). The N = 200 rolling window methods performs well across the metrics, though the N = 100

method consistently performs poorly. Without a method to select the rolling window length, this

poses a problem for the analyst in practice. The weighted methods tend to outperform the N = 100

method, and are broadly competitive with the N = 200 window method.

5.8 Conclusion

We propose a comprehensive method for forecasting diffusion indices and time series panels in the

presence of non-stationarity. This relies on two moving sum data segmentation methods to detect

changes in two factor model components: in the latent VAR parameters, and in factor-augmented

regressions. We show that these consistently detect and locate multiple changes. We describe

data-adaptive extensions to the methodology, to address undetectable or multiscale changes, and

a coarse grid procedure to reduce computational cost. After the data has been segmented, we

propose to make forecasts with data-adaptive weights, which take the estimated change points
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Figure 5.4: Cumulative relative forecast errors (FEavg
x − t,FEabs

x − t and FEmax
x − t respectively) for X t+1|t,

using GDFM forecasts, for the FRED-MD data described in Section 6.6.2. Each colour corresponds to a
different forecast method. Solid lines denote expanding estimation windows, while dashed lines denote a
rolling N = 200 window.

into account.

We report the performance of our methods on simulated data, and find the VAR segmenta-

tion method has favourable performance against competitors when the model is well-specified.

With an application to a real macroeconomic dataset we show that our methodology can give

superior forecast performance to the popularly-used rolling window method, while adding little

computational burden.

It would be straightforward to extend the proposed method to the factor-augmented vector

autoregression model, or to account for changes in the low-dimensional innovation covariance,

allowing for the detection of all the changes categorised in Remark 5.1. The proposed weighted

schemes could be used with the GDFM forecast methods, and these could be compared empirically.

Finally, the estimated change points could be incorporated into Kalman filter estimation (Kim,

1994).
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Figure 5.5: Cumulative forecast errors (FEavg
y − t,FEabs

y − t and FEsign
y − t/2 respectively), using weighting

methods from Table 5.1, for the excess bond return xr(2)
t described in Section 6.6.2. Each colour corresponds

to a different forecast weighting method. Solid lines denote methods accounting for change points, while
dashed lines denote those which do not.
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Table 5.3: (V1)–(V3): Distributions of q̂− q and the covering metric C (P̂ ,P ) of the estimated segmenta-
tions when q = 3, and the empirical size when q = 0 returned by mosumfvar, with or without automatic
parameter selection, and fvarseg. The best performer for each metric is given in bold.

q̂–q
Model Method Variable -3 -2 -1 0 1 2 3 CM Size

(V1) mosumfvar p = 25 90 10 0 0 0 0 0 0.2744 0
(automatic) 50 80 19 1 0 0 0 0 0.2983 0

100 64 29 6 1 0 0 0 0.3561 0
150 28 40 27 4 1 0 0 0.5114 0.01
200 15 41 30 14 0 0 0 0.5919 0

mosumfvar 25 93 7 0 0 0 0 0 0.2671 0
(fixed) 50 81 18 1 0 0 0 0 0.2958 0

100 27 57 14 2 0 0 0 0.4682 0
150 25 41 30 3 1 0 0 0.5213 0
200 16 40 32 12 0 0 0 0.5852 0

fvarseg 25 31 26 23 13 5 2 0 0.5196 0.07
50 31 30 23 15 1 0 0 0.5166 0.11
100 26 29 30 13 2 0 0 0.5341 0.12
150 27 22 34 15 2 0 0 0.5458 0.08
200 38 26 20 16 0 0 0 0.4955 0.04

(V2) mosumfvar r = 2 87 5 8 0 0 0 0 0.3011 0
(automatic) 3 64 29 6 1 0 0 0 0.3561 0

4 56 30 13 1 0 0 0 0.3875 0
5 38 17 20 10 10 3 2 0.4994 0.14

mosumfvar 2 14 39 36 10 1 0 0 0.6012 0
(fixed) 3 27 57 14 2 0 0 0 0.4682 0

4 49 34 15 2 0 0 0 0.4089 0
5 5 25 32 20 15 3 0 0.6359 0.2

fvarseg 2 0 5 14 67 14 0 0 0.8621 0.01
3 26 29 30 13 2 0 0 0.5341 0.12
4 61 22 11 6 0 0 0 0.3604 0.1
5 70 19 10 0 1 0 0 0.3283 0.26

(V3) mosumfvar ν= 3 10 16 19 33 10 7 5 0.7334 0.13
(automatic) 5 35 16 29 20 0 0 0 0.5728 0

7 72 10 12 6 0 0 0 0.3761 0

mosumfvar 3 26 35 29 8 2 0 0 0.5380 0
(fixed) 5 3 23 44 30 0 0 0 0.7342 0

7 4 33 40 22 1 0 0 0.6900 0

fvarseg 3 17 6 11 20 28 9 9 0.6039 0.75
5 0 2 8 51 27 9 3 0.8361 0.7
7 0 1 14 52 28 5 0 0.8622 0.27
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Table 5.4: Forecast errors for XT+1 in terms of FEavg
x ,FEabs

x , and FEmax
x under (F1)–(F3) for T =

200, . . . ,449 over 30 realisations. Forecast weights are as described in Table 5.1, and the change points are
either given (‘Oracle’) or estimated by mosumfvar. The best performer for each metric is given in bold.

Oracle Estimated

Model Metric Summary Linear Robust Linear Robust Current Expanding Rolling (100) Rolling (200)

(F1) avg mean 0.7774 0.7767 0.6990 0.6990 0.6902 0.6990 0.6904 0.6935
median 0.9716 0.9713 0.8579 0.8579 0.8403 0.8579 0.8386 0.8478

se 0.3955 0.3952 0.3767 0.3767 0.3735 0.3767 0.3737 0.3746
abs mean 0.7872 0.7869 0.7416 0.7416 0.7372 0.7416 0.7373 0.7387

median 0.9852 0.9847 0.9206 0.9206 0.9137 0.9206 0.9116 0.9155
se 0.3958 0.3956 0.3800 0.3800 0.3781 0.3800 0.3782 0.3788

max mean 0.7921 0.7917 0.7610 0.7610 0.7552 0.7610 0.7550 0.7577
median 0.9819 0.9819 0.9194 0.9194 0.9128 0.9194 0.9133 0.9150

se 0.4001 0.3999 0.3980 0.3980 0.3948 0.3980 0.3946 0.3963

(F2) avg mean 0.8352 0.8017 0.8627 0.8627 0.8380 0.8627 0.8046 0.8263
median 0.9953 0.9710 1.0035 1.0035 0.9728 1.0035 0.9522 0.9832

se 0.4501 0.4284 0.4749 0.4749 0.4774 0.4749 0.4499 0.4486
abs mean 0.8163 0.7983 0.8301 0.8301 0.8151 0.8301 0.7978 0.8112

median 0.9977 0.9852 1.0012 1.0012 0.9863 1.0012 0.9741 0.9914
se 0.4180 0.4077 0.4283 0.4283 0.4256 0.4283 0.4137 0.4163

max mean 0.8103 0.7988 0.8186 0.8186 0.8092 0.8186 0.7983 0.8068
median 0.9964 0.9841 1.0001 1.0001 0.9827 1.0001 0.9741 0.9895

se 0.4107 0.4045 0.4165 0.4165 0.4148 0.4165 0.4080 0.4095

(F3) avg mean 0.7485 0.7396 0.7583 0.7583 0.7493 0.7583 0.7505 0.7497
median 0.9058 0.8906 0.9213 0.9213 0.9007 0.9213 0.8968 0.9061

se 0.3939 0.3908 0.3983 0.3983 0.3983 0.3983 0.4023 0.3958
abs mean 0.7710 0.7663 0.7758 0.7758 0.7710 0.7758 0.7714 0.7714

median 0.9500 0.9417 0.9580 0.9580 0.9479 0.9580 0.9443 0.9495
se 0.3915 0.3897 0.3937 0.3937 0.3928 0.3937 0.3940 0.3922

max mean 0.7782 0.7733 0.7844 0.7844 0.7784 0.7844 0.7785 0.7791
median 0.9452 0.9387 0.9524 0.9524 0.9432 0.9524 0.9414 0.9464

se 0.4012 0.3989 0.4050 0.4050 0.4028 0.4050 0.4034 0.4025
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Table 5.5: (R1)–(R3): Distributions of q̂y− qy and the covering metric C (P̂ ,P ) of the estimated segmenta-
tions when qy = 3, and the empirical size when qy = 0 returned by mosumfvar, with or without automatic
parameter selection, and moseg. The best performer for each metric is given in bold.

q̂y–qy

Model Method Variable -3 -2 -1 0 1 2 3 CM null

(R1) mosumfvar p = 100 8 2 15 74 1 0 0 0.8654 0
(automatic) 200 0 0 9 90 1 0 0 0.9426 0

300 0 1 6 93 0 0 0 0.9483 0
400 0 2 7 91 0 0 0 0.9369 0

mosumfvar 100 0 1 15 83 1 0 0 0.9270 0
(fixed) 200 0 0 9 90 1 0 0 0.9426 0

300 0 1 6 93 0 0 0 0.9483 0
400 0 2 7 91 0 0 0 0.9369 0

moseg 100 28 20 5 16 10 8 13 0.5064 0.61
200 31 20 12 9 8 11 9 0.5257 0.45
300 31 20 10 7 18 8 6 0.5458 0.52
400 24 14 16 9 25 11 1 0.6249 0.47

(R2) mosumfvar r = 2 96 3 1 0 0 0 0 0.2623 0
(automatic) 4 8 2 15 74 1 0 0 0.8654 0

6 3 1 0 95 1 0 0 0.9384 0.01
8 0 2 1 86 3 4 4 0.8854 0.24
10 0 0 0 29 1 1 69 0.6736 0.82

mosumfvar 2 95 4 1 0 0 0 0 0.2647 0
(fixed) 4 0 1 15 83 1 0 0 0.9270 0

6 0 0 0 100 0 0 0 0.9675 0
8 0 0 0 99 1 0 0 0.9585 0.12
10 0 0 0 100 0 0 0 0.9618 0.35

moseg 2 38 15 8 10 6 9 14 0.4773 0.53
4 28 20 5 16 10 8 13 0.5064 0.61
6 21 16 14 10 9 15 15 0.5290 0.54
8 30 19 9 13 7 8 14 0.4889 0.56
10 31 12 8 6 11 4 28 0.5131 0.63

(R3) mosumfvar ν= 3 98 2 0 0 0 0 0 0.2546 0
(automatic) 5 17 33 36 14 0 0 0 0.5910 0

7 45 40 13 2 0 0 0 0.4208 0

mosumfvar 3 98 2 0 0 0 0 0 0.2549 0
(fixed) 5 14 36 36 14 0 0 0 0.6048 0

7 41 42 15 2 0 0 0 0.4351 0

moseg 3 47 14 6 11 5 5 12 0.3960 0.47
5 39 25 5 8 14 5 4 0.4582 0.53
7 34 20 6 11 10 7 12 0.4739 0.47
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Table 5.6: Forecast errors for yT+1 in terms of FEavg
y ,FEabs

y , and FEsign
y under (R1)–(R3) for T =

200, . . . ,449 over 30 realisations. Forecast weights are as described in Table 5.1, and the change points are
either given (‘Oracle’) or estimated by mosumfvar. The best performer for each metric is given in bold.

Oracle Estimated

Metric Summary Linear Robust Linear Robust Current Expanding Rolling (100) Rolling (200)

avg mean 64.0287 5.8744 16.1094 20.0395 39.3405 20.4682 9.4892 3.3583
median 0.9797 0.9269 0.9292 0.9425 0.9421 0.9051 0.9550 0.9578

se 3023.9654 177.8788 613.5313 693.3084 1685.7670 682.4135 335.4904 68.3457
abs mean 1.2593 0.9814 1.0994 1.1270 1.2324 1.1488 0.9909 0.9055

median 0.9898 0.9627 0.9639 0.9708 0.9706 0.9514 0.9772 0.9787
se 7.9026 2.2163 3.8604 4.3326 6.1503 4.3762 2.9169 1.5933

sign mean 0.4603 0.3819 0.3968 0.4136 0.4236 0.3945 0.3987 0.3735
se 0.4985 0.4859 0.4893 0.4925 0.4942 0.4888 0.4897 0.4838

Table 5.7: Forecast errors for X t+1 measured by FEavg
x , FEabs

x , and FEmax
x , using weighting methods from

Table 5.1 and factor model forecasts, for the FRED-MD data described in Section 6.6.2. The best performer
for each metric is given in bold.

Rolling Expanding Rolling

Metric Linear Robust Current Expanding N = 100 N = 200 SW FHLR FHLZ SW FHLR FHLZ

avg mean 0.8914 0.8918 0.8924 0.8919 0.9066 0.8937 1.0150 0.9184 1.0212 0.9900 0.9199 0.9859
median 0.9211 0.9201 0.9191 0.9201 0.9322 0.9246 1.0112 0.9321 1.0215 0.9840 0.9379 0.9781

se 0.1478 0.1485 0.1505 0.1483 0.1526 0.1481 0.1049 0.1347 0.0837 0.0888 0.1264 0.0992
abs mean 0.9301 0.9302 0.9308 0.9307 0.9405 0.9313 1.0074 0.9509 1.0100 0.9939 0.9536 0.9923

median 0.9477 0.9443 0.9443 0.9454 0.9519 0.9479 1.0063 0.9560 1.0092 0.9897 0.9647 0.9871
se 0.0918 0.0921 0.0931 0.0921 0.0942 0.0919 0.0626 0.0844 0.0484 0.0531 0.0800 0.0632

max mean 0.9879 0.9877 0.9874 0.9878 0.9880 0.9882 1.0055 0.9881 1.0053 1.0016 0.9854 1.0045
median 0.9990 0.9989 0.9990 0.9990 0.9998 0.9993 1.0023 0.9985 1.0011 1.0021 0.9995 1.0016

se 0.0756 0.0757 0.0761 0.0767 0.0809 0.0765 0.0532 0.0759 0.0443 0.0482 0.0792 0.0623

Table 5.8: Forecast errors for yt+1 measured by FEavg
y , FEabs

y , and FEsign
y , using weighting methods from

Table 5.1, for the excess bond return xr(2)
t described in Section 6.6.2. The best performer for each metric is

given in bold.

Metric Summary Linear Robust Current Expanding Rolling (100) Rolling (200)

avg mean 1.0718 1.0678 1.0568 1.1213 1.1201 1.0440
median 0.4936 0.5124 0.4835 0.6125 0.5182 0.4540

se 1.7584 1.7453 1.7593 1.7422 1.9251 1.7581
abs mean 0.8224 0.8313 0.8213 0.8637 0.8483 0.8082

median 0.7026 0.7158 0.6953 0.7826 0.7199 0.6738
se 0.6296 0.6144 0.6189 0.6133 0.6335 0.6258

sign mean 0.6445 0.6681 0.6103 0.6638 0.6124 0.6081
se 0.4792 0.4714 0.4882 0.4729 0.4877 0.4887
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6
FACTOR-ADJUSTED NETWORK ESTIMATION AND FORECASTING

FOR HIGH-DIMENSIONAL TIME SERIES

6.1 Introduction

Vector autoregressive (VAR) models are popularly adopted for modelling time series

datasets collected in many disciplines including economics (Koop, 2013), finance (Barigozzi

and Brownlees, 2019), neuroscience (Kirch et al., 2015) and systems biology (Shojaie

and Michailidis, 2010), to name a few. By fitting a VAR model to the data, we can infer dynamic

interdependence between the variables and forecast future values. In particular, estimating

the non-zero elements of the VAR parameter matrices recovers directed edges between the

components of vector time series in a Granger causality network. Besides, by estimating the

precision matrix (inverse of the covariance matrix) of the VAR innovations, we can define a

network representing their contemporaneous dependencies by means of partial correlations. Fi-

nally, the inverse of the long-run covariance matrix of the data simultaneously captures lead-lag

and contemporaneous co-movements of the variables. For further discussions on the network

interpretation of VAR modelling, we refer to Dahlhaus (2000), Eichler (2007), Billio et al. (2012)

and Barigozzi and Brownlees (2019).

Fitting VAR models to the data quickly becomes a high-dimensional problem as the number

of parameters grows quadratically with the dimensionality of the data. There exists a mature

literature on `1-regularisation methods for estimating VAR models in high dimensions under

suitable sparsity assumptions on the VAR parameters (Basu and Michailidis, 2015; Han et al.,

2015; Kock and Callot, 2015; Liu and Zhang, 2021a; Medeiros and Mendes, 2016; Nicholson et al.,

2020). Consistency of such methods is derived under the assumption that the spectral density

matrix of the data has bounded eigenvalues. However, in many applications, the datasets exhibit
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strong serial and cross-sectional correlations which leads to the violation of this assumption. As

a motivating example, we introduce a dataset of node-specific prices in the PJM (Pennsylvania,

New Jersey and Maryland) power pool area in the United States, see Section 6.6.1 for further

details. Figure 6.1 demonstrates that the leading eigenvalue of the long-run covariance matrix

(i.e. spectral density matrix at frequency 0) increases linearly as the dimension of the data

increases, which implies the presence of latent common factors in the panel data (Forni et al.,

2000). Additionally, the left panel of Figure 6.2 shows the inadequacy of fitting a VAR model to

such data under the sparsity assumption via `1-regularisation methods, unless the presence of

strong correlations is accounted for by a factor-adjustment step as in the right panel. Similar

behaviour is demonstrated in Barigozzi et al. (2023) for the panel of equity volatility measures,

also analysed in this chapter.
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Figure 6.1: Box plots of the two largest eigenvalues (y-axis) of the long-run covariance matrix estimated
from the energy price data collected between 01/01/2021 and 19/07/2021 (n = 200), see Section 6.6.2 for
further details. Cross-sections of the data are randomly sampled 100 times for each given dimension
p ∈ {2, . . . ,50} (x-axis) to produce the box plots.

Barigozzi et al. (2023) propose the FNETS methodology for factor-adjusted VAR modelling

of high-dimensional, second-order stationary time series. Under their proposed model, the data

is decomposed into two latent components such that the factor-driven component accounts

for pervasive leading, lagging or contemporaneous co-movements of the variables, while the

remaining idiosyncratic dynamic dependence between the variables is modelled by a sparse

VAR process. Then, FNETS provides tools for inferring the networks underlying the latent VAR

process and forecasting.

In this chapter, we present an R package named fnets which implements the FNETS method-

ology. It provides a range of user-friendly tools for estimating and visualising the networks

representing the interconnectedness of time series variables, and for producing forecasts. In

addition, fnets thoroughly addresses the problem of selecting tuning parameters ranging from
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Granger causal network Granger causal network

Figure 6.2: Granger causal networks defined in (6.5) obtained from fitting a VAR(1) model to the energy
price data analysed in Figure 6.1, without (left) and with (right) the factor adjustment step outlined in
Section 6.2.3. Edge weights (proportional to the size of coefficient estimates) are visualised by the width of
each edge, and the nodes are coloured according to their groupings, see Section 6.6.2

the number of factors and the VAR order, to regularisation and thresholding parameters adopted

for producing sparse and interpretable networks. As such, a simple call of the main routine of

fnets requires the input data only, and it outputs an object of S3 class fnets which is supported

by a plot method for network visualisation and a predict method for time series forecasting.

There exist several packages for fitting VAR models and their extensions to high-dimensional

time series, see lsvar (Bai, 2021), sparsevar (Vazzoler, 2021), nets (Brownlees, 2020), mgm
(Haslbeck and Waldorp, 2020), graphicalVAR (Epskamp et al., 2018), bigVAR (Nicholson et al.,

2017), and bigtime (Wilms et al., 2021). There also exist R packages for time series factor

modelling such as dfms (Krantz and Bagdziunas, 2023) and sparseDFM (Mosley et al., 2023),

and FAVAR (Bernanke et al., 2005) for Bayesian inference of factor-augmented VAR models.

The package fnets is clearly distinguished from, and complements, the above list by handling

strong cross-sectional and serial correlations in the data via factor-adjustment step performed

in frequency domain. In addition, the FNETS methodology operates under the most general

approach to high-dimensional time series factor modelling termed the Generalised Dynamic

Factor Model (GDFM), first proposed in Forni et al. (2000) and further investigated in Forni

et al. (2015). Accordingly, fnets is the first R package to provide tools for high-dimensional panel

data analysis under the GDFM, such as fast computation of spectral density and autocovariance

matrices via the Fast Fourier Transform, but it is flexible enough to allow for more restrictive

static factor models. While there exist some packages for network-based time series modelling

(e.g. GNAR, Knight et al., 2020), we highlight that the goal of fnets is to learn the networks

underlying a time series and does not require a network as an input.
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6.2 FNETS methodology

In this section, we introduce the factor-adjusted VAR model and describe the FNETS methodology

proposed in Barigozzi et al. (2023) for network estimation and forecasting of high-dimensional

time series. We limit ourselves to describing the key steps of FNETS and refer to the above paper

for its comprehensive treatment, both methodologically and theoretically.

6.2.1 Factor-adjusted VAR model

A zero-mean, p-variate process ξt follows a VAR(d) model if it satisfies

ξt =
d∑
`=1

A`ξt−`+Γ1/2εt, (6.1)

where A` ∈ Rp×p, 1 ≤ ` ≤ d, determine how future values of the series depend on their past.

For the p-variate random vector εt = (ε1t, . . . ,εpt)>, we assume that εit are independently and

identically distributed (i.i.d.) for all i and t with IE(εit) = 0 and Var(εit) = 1. Then, the positive

definite matrix Γ ∈Rp×p is the covariance matrix of the innovations Γ1/2εt.

In the literature on factor modelling of high-dimensional time series, the factor-driven com-

ponent exhibits strong cross-sectional and/or serial correlations by ‘loading’ finite-dimensional

vectors of factors linearly. Among many time series factor models, the GDFM (Forni et al., 2000)

provides the most general approach where the p-variate factor-driven component χt admits the

following representation

χt =B(L)ut =
∞∑
`=0

B`ut−` with ut = (u1t, . . . ,uqt)> and B` ∈Rp×q, (6.2)

for some fixed q, where L stands for the lag operator. The q-variate random vector ut contains the

common factors which are loaded across the variables and time by the filter B(L)=∑∞
`=0 B`L`,

and it is assumed that u jt are i.i.d. with IE(u jt)= 0 and Var(u jt)= 1. The model (6.2) reduces to a

static factor model (Bai, 2003; Fan et al., 2013; Stock and Watson, 2002a), when B(L)=∑s
`=0 B`L`

for some finite integer s ≥ 0. Then, we can write

χt =ΛFt where Ft = (u>
t , . . . ,u>

t−s)
> and Λ= [B0, . . . ,Bs] (6.3)

with r = q(s+1) as the dimension of static factors Ft. Throughout, we refer to the models (6.2)

and (6.3) as unrestricted and restricted to highlight that the latter imposes more restrictions on

the model.

Barigozzi et al. (2023) propose a factor-adjusted VAR model under which we observe a

zero-mean, second-order stationary process Xt = (X1t, . . . , X pt)> for t = 1, . . . ,n, that permits a

decomposition into the sum of the unobserved components ξt and χt, i.e.

Xt = ξt +χt. (6.4)

We assume that IE(εitu jt′)= 0 for all i, j, t and t′ as is commonly assumed in the literature, such

that IE(ξitχi′ t′)= 0 for all 1≤ i, i′ ≤ p and t, t′ ∈Z.

114



6.2. FNETS METHODOLOGY

6.2.2 Networks

Under (6.4), it is of interest to infer three types of networks representing the interconnectedness

of Xt after factor adjustment. Let V = {1, . . . , p} denote the set of vertices representing the p

cross-sections. Then, the VAR parameter matrices, A` = [A`,ii′ , 1≤ i, i′ ≤ p], encode the directed

network N G = (V ,E G) representing Granger causal linkages, where the set of edges are given by

E G = {
(i, i′) ∈ V ×V : A`,ii′ 6= 0 for some 1≤ `≤ d

}
. (6.5)

Here, the presence of an edge (i, i′) ∈ E G indicates that ξi′,t−` Granger causes ξit at some lag

1≤ `≤ d (Dahlhaus, 2000).

The second network contains undirected edges representing contemporaneous cross-sectional

dependence in VAR innovations Γ1/2εt, denoted by N C = (V ,E C). We have (i, i′) ∈ E C if and only

if the partial correlation between the i-th and i′-th elements of Γ1/2εt is non-zero, which in turn

is given by −δii′ /
√
δii ·δi′ i′ where Γ−1 =∆= [δii′ , 1≤ i, i′ ≤ p] (Peng et al., 2009). Hence, the set of

edges for N C is given by

E C =
{

(i, i′) ∈ V ×V : i 6= i′ and − δii′√
δii ·δi′ i′

6= 0

}
, (6.6)

Finally, we can summarise the aforementioned lead-lag and contemporaneous relations

between the variables in a single, undirected network N L = (V ,E L) by means of the long-run

partial correlations of ξt. Let Ω = [ωii′ , 1 ≤ i, i′ ≤ p] denote the inverse of the zero-frequency

spectral density (a.k.a. long-run covariance) of ξt, which is given by Ω = 2πA >(1)∆A (1) with

A (z)= I−∑d
`=1 A`z`. Then, the long-run partial correlation between the i-th and i′-th elements

of ξt, is obtained as −ωii′ /
p
ωii ·ωi′ i′ (Dahlhaus, 2000), so the edge set of N L is given by

E L =
{

(i, i′) ∈ V ×V : i 6= i′ and − ωii′p
ωii ·ωi′ i′

6= 0
}

. (6.7)

6.2.3 FNETS: Network estimation

We describe the three-step methodology for estimating the networks N G, N C and N L. Through-

out, we assume that the number of factors, either q under the more general model in (6.2) or r

under the restricted model in (6.3), and the VAR order d are known, and discuss its selection in

Section 6.3.

6.2.3.1 Step 1: Factor adjustment

The autocovariance (ACV) matrices of ξt, denoted by Γξ(`) = IE(ξt−`ξ>t ) for ` ≥ 0 and Γξ(`) =
(Γξ(−`))> for ` < 0, play a key role in network estimation. Since ξt is not directly observed,

we propose to adjust for the presence of the factor-driven χt and estimate Γξ(`). For this, we

adopt a frequency domain-based approach and perform dynamic principal component analysis

(PCA). Spectral density matrix Σx(ω) of a time series {Xt}t∈Z aggregates information of its
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ACV Γx(`), ` ∈ Z, at a specific frequency ω ∈ [−π,π], and is obtained by the Fourier transform

Σx(ω)= (2π)−1 ∑∞
`=−∞Γx(`)exp(−ι`ω) where ι=p−1 . Denoting the sample ACV matrix of Xt at

lag ` by

Γ̂x(`)= 1
n

n∑
t=`+1

Xt−`X>
t when `≥ 0 and Γ̂x(`)= (Γ̂x(−`))> when `< 0,

we estimate the spectral density of Xt by

Σ̂x(ωk)= 1
2π

m∑
`=−m

K
(
`

m

)
Γ̂x(`)exp(−ι`ωk), (6.8)

where K(·) denotes a kernel, m the kernel bandwidth (for its choice, see Section 6.3) and ωk =
2πk/(2m+1) the Fourier frequencies. We adopt the Bartlett kernel as K(·) which ensures positive

semi-definiteness of Σ̂x(ω) and also Γ̂ξ(`) estimating Γξ(`) obtained as described below.

Performing PCA on Σ̂x(ωk) at each ωk, we obtain the estimator of the spectral density matrix of

χt as Σ̂χ(ωk)=∑q
j=1 µ̂x, j(ωk)êx, j(ωk)(êx, j(ωk))∗, where µ̂x, j(ωk) denotes the j-th largest eigenvalue

of Σ̂x(ωk), êx, j(ωk) its associated eigenvector, and for any vector a ∈Cn, we denote its transposed

complex conjugate by a∗. Then taking the inverse Fourier transform of Σ̂χ(ωk), −m ≤ k ≤ m, leads

to an estimator of Γχ(`), the ACV matrix of χt, as

Γ̂χ(`)= 2π
2m+1

m∑
k=−m

Σ̂χ(ωk)exp(ι`ωk) for −m ≤ `≤ m.

Finally, we estimate the ACV of ξt by

Γ̂ξ(`)= Γ̂x(`)− Γ̂χ(`). (6.9)

When we assume the restricted factor model in (6.3), the factor-adjustment step is simplified

as it suffices to perform PCA in the time domain, i.e. eigenanalysis of the sample covariance

matrix Γ̂x(0). Denoting the eigenvector of Γ̂x(0) associated with its j-th largest eigenvalue by êx, j,

we obtain Γ̂ξ(`)= Γ̂x(`)− ÊxÊ>
x Γ̂x(`)ÊxÊ>

x where Êx = [êx, j, 1≤ j ≤ r].

6.2.3.2 Step 2: Estimation of N G

Recall from (6.5) that N G representing Granger causal linkages, has its edge set determined

by the VAR transition matrices A`, 1 ≤ ` ≤ d. By the Yule-Walker equation, we have β =
[A1, . . . ,Ad]> =G(d)−1g(d), where

G(d)=


Γξ(0) Γξ(−1) . . . Γξ(−d+1)

Γξ(1) Γξ(0) . . . Γξ(−d+2)
. . .

Γξ(d−1) Γξ(d−2) . . . Γξ(0)

 and g(d)=


Γξ(1)

Γξ(2)
...

Γξ(d)

 . (6.10)

We propose to estimate β as a regularised Yule-Walker estimator based on Ĝ(d) and ĝ(d), each of

which is obtained by replacing Γξ(`) with Γ̂ξ(`) (see (6.9)) in the definition of G(d) and g(d).
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For any matrix M= [mi j] ∈Rn1×n2 , let |M|1 =∑n1
i=1

∑n2
j=1 |mi j|, |M|∞ =max1≤i≤n1 max1≤ j≤n2 |mi j|

and tr(M)=∑n1
i=1 mii when n1 = n2. We consider two estimators of β. Firstly, we adopt a Lasso-

type estimator which solves an `1-regularised M-estimation problem

β̂
las = argmin

M∈Rpd×p
tr

(
M>Ĝ(d)M−2M>ĝ(d)

)+λ|M|1 (6.11)

with a tuning parameter λ > 0. In the implementation, we solve (6.11) via the fast iterative

shrinkage-thresholding algorithm (FISTA, Beck and Teboulle, 2009). Alternatively, we adopt a

constrained `1-minimisation approach closely related to the Dantzig selector (DS, Candes and

Tao, 2007):

β̂
DS = argmin

M∈Rpd×p
|M|1 subject to

∣∣Ĝ(d)M− ĝ(d)
∣∣∞ ≤λ (6.12)

for some tuning parameter λ> 0. We divide (6.12) into p sub-problems and obtain each column of

β̂
DS via the simplex algorithm (using the function lp in lpSolve).

Barigozzi et al. (2023) establish the consistency of both β̂las and β̂DS but, as is typically the

case for `1-regularisation methods, they do not achieve exact recovery of the support of β. Hence

we propose to estimate the edge set of N G by thresholding the elements of β̂ with some threshold

t> 0, where either β̂= β̂las or β̂= β̂DS, i.e.

β̃(t)=
[
β̂i j · I{|β̂i j |>t}, 1≤ i ≤ pd, 1≤ j ≤ p

]
. (6.13)

We discuss cross validation and information criterion methods for selecting λ, and a data-driven

choice of t, in Section 6.3.

6.2.3.3 Step 3: Estimation of N C and N L

From the definitions of N C and N L given in (6.6) and (6.7), their edge sets are obtained by

estimating ∆=Γ−1 and Ω= 2πA >(1)∆A (1). Given β̂= [Â1, . . . ,Âd]>, some estimator of the VAR

parameter matrices obtained as in either (6.11) or (6.12), a natural estimator of Γ arises from

the Yule-Walker equation Γ = Γξ(0)−∑d
`=1 A`Γξ(`) = Γξ(0)−β>g, as Γ̂ = Γ̂ξ(0)− β̂>ĝ. In high

dimensions, it is not feasible or recommended to directly invert Γ̂ to estimate ∆. Therefore, we

adopt a constrained `1-minimisation method motivated by the CLIME methodology of Cai et al.

(2011). Specifically, the CLIME estimator of ∆ is obtained by first solving

∆̌= argminM∈Rp×p |M|1 subject to
∣∣Γ̂M−I

∣∣∞ ≤ η, (6.14)

and applying a symmetrisation step to ∆̌= [δ̌ii′ , 1≤ i, j ≤ p] as

∆̂= [δ̂ii′ , 1≤ i, i′ ≤ p] with δ̂ii′ = δ̌ii′ · I{|δ̌ii′ |≤|δ̌i′ i |} + δ̌i′ i · I{|δ̌i′ i |<|δ̌ii′ |}. (6.15)

for some tuning parameter η> 0.

Cai et al. (2016) propose ACLIME, which improves the CLIME estimator by selecting the

parameter η in (6.15) adaptively; we describe this here. Let Γ̂∗ = Γ̂+n−1I and η1 = 2
√

log(p)/n .
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Step 1: Let ∆̌(1) = [δ̌(1)
ii′ ] be the solution to

∆̌
(1)
·i′ = argminm∈Rp |m|1 subject to (6.16)∣∣∣(Γ̂∗m−ei′)i

∣∣∣≤ η1(γ̂ii ∨ γ̂i′ i′)mi′ ∀ 1≤ i ≤ p and mi′ > 0,

for i′ = 1, . . . , p. Then we obtain truncated estimates

δ̂(1)
ii = δ̌(1)

ii · I{|γ̂ii |≤
p

n/ log(p) } +
√

log(p)
n

· I{|γ̂ii |>
p

n/ log(p) }.

Step 2: We obtain

∆̌
(2)
·i′ = argminm∈Rp |m|1 subject to

∣∣∣(Γ̂∗m−ei′)i

∣∣∣≤ η2

√
γ̂iiδ̂

(1)
i′ i′ ∀ 1≤ i ≤ p,

where η2 > 0 is a tuning parameter. Since ∆̌(2) is not guaranteed to be symmetric, the final

estimator is obtained after a symmetrisation step:

∆̂ada = [δ̂ii′ , 1≤ i, i′ ≤ p] with δ̂(2)
ii′ = δ̌(2)

ii′ · I{|δ̌(2)
ii′ |≤|δ̌

(2)
i′ i |}

+ δ̌(2)
i′ i · I{|δ̌(2)

i′ i |<|δ̌
(2)
ii′ |}

. (6.17)

The constraints in (6.16) incorporate the parameter in the right-hand side. To use linear

programming software to solve this, we formulate the constraints for each 1≤ i′ ≤ p as

∀1≤ i ≤ p, ((Γ̂∗−Q i′)m−ei′)i ≤ 0,

∀1≤ i ≤ p, −((Γ̂∗+Q i′)m−ei′)i ≤ 0,

mi′ > 0.

where Q i′ has entries qii′ = η1(γ̂ii ∨ γ̂i′ i′) in column i′ and 0 elsewhere.

Given the estimators Â (1) = I−∑d
`=1 Â` and ∆̂, we estimate Ω by Ω̂ = 2πÂ >(1)∆̂Â (1). In

Barigozzi et al. (2023), ∆̂ and Ω̂ are shown to be consistent in `∞- and `1-norms under suitable

sparsity assumptions. However, an additional thresholding step as in (6.13) is required to guar-

antee consistency in estimating the support of ∆ and Ω and consequently the edge sets of N C

and N L. We discuss data-driven selection of these thresholds and η in Section 6.3.

6.2.4 FNETS: Forecasting

Following the estimation procedure, FNETS performs forecasting by estimating the best linear

predictor of Xn+a given Xt, t ≤ n, for a fixed integer a ≥ 1. This is achieved by separately producing

the best linear predictors of χn+a and ξn+a as described below, and then combining them.

6.2.4.1 Forecasting the factor-driven component

For given a ≥ 0, the best linear predictor of χn+a given Xt, t ≤ n, under (6.2) is

χn+a|n =
∞∑
`=0

B`+aun−`.
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Forni et al. (2015) show that the model (6.2) admits a low-rank VAR representation with ut as

the innovations under mild conditions, and Forni et al. (2017) propose the estimators of B` and

ut based on this representation which make use of the estimators of the ACV of χt obtained as

described in Section 6.2.3.1. Then, a natural estimator of χn+a|n is

χ̂unr
n+a|n =

K∑
`=0

B̂`+aûn−` (6.18)

for some truncation lag K . We refer to χ̂unr
n+a|n as the unrestricted estimator of χn+a|n as it is

obtained without imposing any restrictions on the factor model (6.2).

When χt admits the static representation in (6.3), we can show that χn+a|n =Γχ(−a)EχM
−1
χ E>

χχn,

where Mχ ∈Rr×r is a diagonal matrix with the r eigenvalues of Γχ(0) on its diagonal and Eχ ∈Rp×r

the matrix of the corresponding eigenvectors; see Section 4.1 of Barigozzi et al. (2023) and also

Forni et al. (2005). This suggests an estimator

χ̂res
n+a|n = Γ̂χ(−a)ÊχM̂

−1
χ Ê>

χXn, (6.19)

where M̂χ and Êχ are obtained from the eigendecomposition of Γ̂χ(0). We refer to χ̂res
n+a|n as the

restricted estimator of χn+a|n. As a by-product, we obtain the in-sample estimators of χt, t ≤ n, as

χ̂t|n = χ̂t, with either of the two estimators in (6.18) and (6.19).

6.2.4.2 Forecasting the latent VAR process

Once the VAR parameters are estimated either as in (6.11) or (6.12), we produce an estimator of

ξn+a|n =∑d
`=1 A`ξn+a−`, the best linear predictor of ξn+a given Xt, t ≤ n, as

ξ̂n+a|n =
max(1,a)−1∑

`=1
Â`ξ̂n+a−`|n +

d∑
`=max(1,a)

Â`ξ̂n+a−`. (6.20)

Here, ξ̂n+1−` =Xn+1−`−χ̂n+1−` denotes the in-sample estimator of ξn+1−`, which may be obtained

with either of the two (in-sample) estimators of the factor-driven component in (6.18) and (6.19).

6.3 Tuning parameter selection

6.3.1 Factor numbers q and r

The estimation and forecasting tools of the FNETS methodology require the selection of the

number of factors, i.e. q under the unrestricted factor model in (6.2), and r under the restricted,

static factor model in (6.3). Under (6.2), there exists a large gap between the q leading eigenvalues

of the spectral density matrix of Xt and the remainder which diverges with p (see also Figure 6.1

We provide two methods for selecting the factor number q, which make use of the postulated

eigengap using µ̂x, j(ωk), 1≤ j ≤ p, the eigenvalues of the spectral density estimator of Xt in (6.8)

at a given Fourier frequency ωk, −m ≤ k ≤ m.
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Hallin and Liška (2007) propose an information criterion for selecting the number of factors

under the model (6.2) and further, a methodology for tuning the multiplicative constant in the

penalty. Define

IC(b, c)= log

(
1
p

p∑
j=b+1

1
2m+1

m∑
k=−m

µ̂x, j(ωk)

)
+b · c ·pen(n, p), (6.21)

where pen(n, p)=min(p,m2,
p

n/m )−1/2 by default (for other choices of the information criterion,

see Section D.1) and c > 0 a constant. Provided that pen(n, p) → 0 sufficiently slowly, for an

arbitrary value of c, the factor number q is consistently estimated by the minimiser of IC(b, c)

over b ∈ {0, . . . , q̄}, with some fixed q̄ as the maximum allowable number of factors. However, this is

not the case in finite sample, and Hallin and Liška (2007) propose to simultaneously select q and c.

First, we identify q̂(nl , pl , c) = argmin0≤b≤q̄ IC(nl , pl ,b, c) where IC(nl , pl ,b, c) is constructed

analogously to IC(b, c), except that it only involves the sub-sample {X it, 1≤ i ≤ pl , 1≤ t ≤ nl}, for

sequences 0< n1 < . . .< nL = n and 0< p1 < . . .< pL = p. Then, denoting the sample variance of

q̂(nl , pl , c), 1≤ l ≤ L, by S(c), we select q̂ = q̂(n, p, ĉ) with ĉ corresponding to the second interval

of stability with S(c)= 0 for the mapping c 7→ S(c) as c increases from 0 to some cmax (the first

stable interval is where q̄ is selected with a very small value of c). Figure 6.3 plots q̂(n, p, c)

and S(c) for varying values of c obtained from a dataset simulated in Section 6.4.1. In the

implementation of this methodology, we set nl = n− (L− l)bn/20c and pl = b3p/4+ l p/40c with

L = 10, and q̄ =min(50,b√min(n−1, p) c).
Alternatively, we can adopt the ratio-based estimator q̂ = argmin1≤b≤q̄ ER(b) proposed in

Avarucci et al. (2022), where

ER(b)=
(

m∑
k=−m

µ̂x,b+1(ωk)

)−1 (
m∑

k=−m
µ̂x,b(ωk)

)
. (6.22)

These methods are readily modified to select the number of factors r under the restricted

factor model in (6.3), by replacing (2m+1)−1 ∑m
k=−m µ̂x, j(ωk) with µ̂x, j, the j-th largest eigenvalues

of the sample covariance matrix Γ̂x(0). We refer to Bai and Ng (2002) and Alessi et al. (2010) for

the discussion of the information criterion-based method in this setting, and Ahn and Horenstein

(2013) for that of the eigenvalue ratio-based method.

6.3.2 Threshold t

Motivated by Liu et al. (2021), we propose a method for data-driven selection of the threshold t,

which is applied to the estimators of A`, 1 ≤ `≤ d, ∆ or Ω for estimating the edge sets of N G,

N C or N L, respectively; see also (6.13).

Let B = [bi j] ∈ Rm×n denote a matrix for which a threshold is to be selected, i.e. B may be

either β̂= [Â1, . . . ,Âd]>, ∆̂0 (∆̂ with diagonals set to zero) or Ω̂0 (Ω̂ with diagonals set to zero)

obtained from Steps 2 and 3 of FNETS. We work with ∆̂0 and Ω̂0 since we do not threshold the
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Figure 6.3: Plots of c against q̂(n, p, c) (in circle, y-axis on the left) and S(c) (in triangle, y-axis on the
right) with the six IC (see Section D.1) implemented in the function factor.number of fnets, on a dataset
simulated as in Section 6.4.1 (with n = 500, p = 50 and q = 2). With the default choice of IC in (6.21) (IC5),
we obtain q̂ = q̂(n, p, ĉ)= 2 correctly estimating q = 2.

diagonal entries of ∆̂ and Ω̂. As such estimators have been shown to achieve consistency in `∞-

norm, we expect there exists a large gap between the entries of B corresponding to true positives

and false positives. Further, it is expected that the number of edges reduces at a faster rate when

increasing the threshold from 0 towards this (unknown) gap, compared to when increasing the

threshold from the gap to |B|∞. Therefore, we propose to identify this gap by casting the problem

as that of locating a single change point in the trend of the ratio of edges to non-edges,

Ratiok =
|B(tk)|0

max(N −|B(tk)|0,1)
, k = 1, . . . , M.

Here, B(t) = [bi j · I{|bi j |>t}], |B(t)|0 = ∑m1
i=1

∑m2
j=1 I{|bi j |>t} and {tk, 1 ≤ k ≤ M : 0 = t1 < t2 < ·· · < tM =

|B|∞} denotes a sequence of candidate threshold values. We recommend using an exponentially

growing sequence for {tk}M
k=1 since the size of the false positive entries tends to be very small. The

quantity N in the denominator of Ratiok is set as N = p2d when B= β̂, and N = p(p−1) when

B= ∆̂0 or B= Ω̂0. Then, from the difference quotient

Diffk =
Ratiok −Ratiok−1

tk − tk−1
, k = 2, . . . , M,
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we compute the cumulative sum (CUSUM) statistic

CUSUMk =
√

k(M−k)
M

∣∣∣∣∣1
k

k∑
l=2

Diffl −
1

M−k

M∑
l=k+1

Diffl

∣∣∣∣∣ , k = 2, . . . , M−1,

and select tada = tk∗ with k∗ = argmax2≤k≤M−1CUSUMk. For illustration, Figure 6.4 plots Ratiok

and CUSUMk against candidate thresholds for the dataset simulated in Section 6.4.1.
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Figure 6.4: Ratiok (left) and CUSUMk (right) plotted against tk when B = β̂las obtained from the data
simulated in Section 6.4.1 with n = 500 and p = 50, as a Lasso estimator of the VAR parameter matrix,
with the selected tada denoted by the vertical lines.

6.3.3 VAR order d, λ and η

Steps 2 and 3 of the network estimation methodology of FNETS involve the selection of the

tuning parameters λ and η (see (6.11), (6.12) and (6.14)) and the VAR order d. While there exist

a variety of methods available for VAR order selection in fixed dimensions (Lütkepohl, 2005,

Chapter 4), the data-driven selection of d in high dimensions remains largely unaddressed with a

few exceptions (Krampe and Margaritella, 2021; Nicholson et al., 2020; Zheng, 2022). We suggest

two methods for jointly selecting λ and d for Step 2. The first method is also applicable for

selecting η in Step 3.

6.3.3.1 Cross validation

Cross validation (CV) methods have popularly been adopted for tuning parameter and model

selection. While some works exist which justify the usage of conventional CV procedure in the time

series setting in the absence of model mis-specification (Bergmeir et al., 2018), such arguments do

not apply to our problem due to the latency of component time series. Instead, we propose to adopt

a modified CV procedure that bears resemblance to out-of-sample evaluation or rolling forecasting

validation (Wang and Tsay, 2021), for simultaneously selecting d and λ in Step 2. For this, the

data is partitioned into L folds, Il = {n◦
l +1, . . . ,n◦

l+1} with n◦
l =min(ldn/Le,n), 1≤ l ≤ L, and each

fold is split into a training set I train
l = {n◦

l +1, . . . ,d(n◦
l +n◦

l+1)/2e} and a test set I test
l =Il \I train

l .

On each fold, β is estimated from {Xt, t ∈ I train
l } as either the Lasso (6.11) or the Dantzig

122



6.3. TUNING PARAMETER SELECTION

selector (6.12) estimators with λ as the tuning parameter and some b as the VAR order, say

β̂
train
l (λ,b), using which we compute the CV measure

CV(λ,b)=
L∑

l=1
tr

(
Γ̂

test
ξ,l (0)− (β̂train

l (λ,b))>ĝtest
l (b)−

(ĝtest
l (b))>β̂train

l (λ,b)+ (β̂train
l (λ,b))>Ĝtest

l (b)β̂train
l (λ,b)

)
,

where Γ̂test
ξ,l (`),Ĝtest

l (b) and ĝtest
l (b) are generated analogously as Γ̂ξ(`), Ĝ(b) and ĝ(b), respectively,

from the test set {Xt, t ∈ I test
l }. Although we do not directly observe ξt, the measure CV(λ,b)

gives an approximation of the prediction error. Then, we select (λ̂, d̂)= argminλ∈Λ,1≤b≤d̄ CV(λ,b),

where Λ is a grid of values for λ, and d̄ ≥ 1 is a pre-determined upper bound on the VAR order. A

similar approach is taken for the selection of η with a Burg matrix divergence-based CV measure:

CV(η)=
L∑

l=1
tr

(
∆̂

train
l (η)Γ̂test

l

)
− log

∣∣∣∆̂train
l (η)Γ̂test

l

∣∣∣− p.

Here, ∆̂train
l (η) denotes the estimator of ∆ with η as the tuning parameter from {Xt, t ∈I train

l },

and Γ̂test
l the estimator of Γ from {Xt, t ∈ I test

l }, see Section 6.2.3.3 for the descriptions of the

estimators. In the numerical results reported in Section 6.5, the sample size is relatively small

(ranging between n = 200 and n = 500 while p ∈ {50,100,200} and the number of parameters

increasing with p2), and we set L = 1 which returns reasonably good performance. When a larger

number of observations are available relative to the dimensionality, we may use the number of

folds greater than one.

6.3.3.2 Extended Bayesian information criterion

Alternatively, to select the pair (λ,d) in Step 2, we propose to use the extended Bayesian informa-

tion criterion (eBIC) of Chen and Chen (2008), originally proposed for variable selection in high-

dimensional linear regression. Let β̃(λ,b,tada) denote the thresholded version of β̂(λ,b) as in (6.13)

with the threshold tada chosen as described in Section 6.3.2. Then, letting s(λ,b)= |β̃(λ,b,tada)|0,

we define

eBICα(λ,b)= n
2

log(L (λ,b))+ s(λ,b) log(n)+2α log

(
bp2

s(λ,b)

)
, where (6.23)

L (λ,b)= tr
(
Ĝ(b)− (β̃(λ,b))>ĝ(b)− (ĝ(b))>β̃(λ,b)+ (β̃(λ,b))>Ĝ(b)β̃(λ,b)

)
.

Then, we select (λ̂, d̂) = argminλ∈Λ,1≤b≤d̄ eBICα(λ,b). The constant α ∈ (0,1) determines the

degree of penalisation which may be chosen from the relationship between n and p. Preliminary

simulations suggest that α= 0 is a suitable choice for the dimensions (n, p) considered in our

numerical studies.
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6.3.4 Other tuning parameters

Motivated by theoretical results reported in Barigozzi et al. (2023), we select the kernel bandwidth

for Step 1 of FNETS as m = b4(n/ log(n))1/3c. In forecasting the factor-driven component as

in (6.18), we set the truncation lag at K = 20, as it is expected that the elements of B` decay

rapidly as ` increases for short-memory processes.

6.4 Package overview

fnets is available from the Comprehensive R Archive Network (CRAN). The main function, fnets,

implements the FNETS methodology for the input data and returns an object of S3 class fnets.

fnets.var implements Step 2 of the FNETS methodology estimating the VAR parameters only,

and is applicable directly for VAR modelling of high-dimensional time series; its outputs are of

class fnets. fnets.factor.model performs factor modelling under either of the two models (6.2)

and (6.3), and returns an object of class fm. We provide predict methods for the objects of classes

fnets and fm, and a plot method for the objects of the fnets class. We recommend that the input

time series for the above functions are to be transformed to stationarity (if necessary) after a unit

root test. In this section, we demonstrate how to use the functions included with the package.

6.4.1 Data generation

For illustration, we generate an example dataset of n = 500 and p = 50 following the model (6.4).

fnets provides functions for this purpose. For given n and p, the function sim.var generates

the VAR(1) process following (6.1) with d = 1, Γ as supplied to the function (Γ = I by default),

and A1 generated as described in Section 6.5. The function sim.unrestricted generates the

factor-driven component under the unrestricted factor model in (6.2) with q dynamic factors

(q = 2 by default) and the filter B(L) generated as in model (C1) of Section 6.5.

set.seed(111)

n <- 500

p <- 50

x <- sim.var(n, p)$data + sim.unrestricted(n, p)$data

Throughout this section, we use the thus-generated dataset in demonstrating fnets unless speci-

fied otherwise. There also exists sim.restricted which generates the factor-driven component

under the restricted factor model in (6.3). For all data generation functions, the default is to

use the standard normal distribution for generating ut and εt, while supplying the argument

heavy = TRUE, the innovations are generated from
p

3/5 · t5, the t-distribution with 5 degrees

of freedom scaled to have unit variance. The package also comes attached with pre-generated

datasets data.restricted and data.unrestricted.
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6.4.2 Calling fnets with default parameters

The function fnets can be called with the n× p data matrix x as the only input, which sets all

other arguments to their default choices. Then, it performs the factor-adjustment under the

unrestricted model in (6.2) with q estimated by minimising the IC in (6.21). The VAR parameter

matrix is estimated via the Lasso estimator in (6.11) with d = 1 as the VAR order and the tuning

parameters λ and η chosen via CV, and no thresholding is performed. This returns an object of

class fnets whose entries are described in Table 6.1, and is supported by a print method as

below.

fnets(x)

Factor-adjusted vector autoregressive model with

n: 500, p: 50

Factor-driven common component ---------

Factor model: unrestricted

Factor number: 2

Factor number selection method: ic

Information criterion: IC5

Idiosyncratic VAR component ---------

VAR order: 1

VAR estimation method: lasso

Tuning method: cv

Threshold: FALSE

Non-zero entries: 95/2500

Long-run partial correlations ---------

LRPC: TRUE

6.4.3 Calling fnets with optional parameters

We can also specify the arguments of fnets to control how Steps 1–3 of FNETS are to be

performed. The full model call is as follows:

out <- fnets(x, center = TRUE, fm.restricted = FALSE,

q = c("ic", "er"), ic.op = NULL, kern.bw = NULL,

common.args = list(factor.var.order = NULL, max.var.order = NULL, trunc.lags = 20,

n.perm = 10), var.order = 1, var.method = c("lasso", "ds"),

var.args = list(n.iter = NULL, n.cores = min(parallel::detectCores() - 1, 3)),

do.threshold = FALSE, do.lrpc = TRUE, lrpc.adaptive = FALSE,

tuning.args = list(tuning = c("cv", "bic"), n.folds = 1, penalty = NULL,
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Table 6.1: Entries of S3 objects of class fnets

Name Description Type

q Factor number integer
spec Spectral density matrices for Xt, χt and ξt (when fm.restricted = FALSE) list
acv Autocovariance matrices for Xt, χt and ξt list

loadings Estimates of B`, 0≤ `≤ K (when fm.restricted = FALSE) array
or Λ (when fm.restricted = TRUE)

factors Estimates of {ut} (when fm.restricted = FALSE) array
or {Ft} (when fm.restricted = TRUE)

idio.var Estimates of A`, 1≤ `≤ d and Γ, and d and λ used list
lrpc Estimates of ∆, Ω, (long-run) partial correlations and η used list

mean.x Sample mean vector vector
var.method Estimation method for A` (input parameter) string

do.lrpc Whether to estimate the long-run partial correlations (input parameter) Boolean
kern.bw Kernel bandwidth (when fm.restricted = FALSE, input parameter) double

path.length = 10)

)

Here, we discuss a selection of input arguments. The center argument will de-mean the input.

fm.restricted determines whether to perform the factor-adjustment under the restricted factor

model in (6.3) or not. If the number of factors is known, we can specify q with a non-negative

integer. Otherwise, it can be set as "ic" or "er" which selects the factor number estimator to

be used between (6.21) and (6.22). When q = "ic", setting the argument ic.op as an integer

between 1 and 6 specifies the choice of the IC (see Section D.1) where the default is ic.op = 5.

kern.bw takes a positive integer which specifies the bandwidth to be used in Step 1 of FNETS.

The list common.args specifies arguments for estimating B` and ut under (6.2), and relates to

the low-rank VAR representation of χt under the unrestricted factor model. var.order specifies

a vector of positive integers to be considered in VAR order selection. var.method determines the

method for VAR parameter estimation, which can be either "lasso" (for the estimator in (6.11)) or

"ds" (for that in (6.12)). The list var.args takes additional parameters for Step 2 of FNETS, such

as the number of gradient descent steps (n.iter, when var.method = "lasso") or the number of

cores to use for parallel computing (n.cores, when var.method = "ds"). do.threshold selects

whether to threshold the estimators of A`, 1≤ `≤ d, ∆ and Ω. It is possible to perform Steps 1–2

of FNETS only without estimating ∆ and Ω by setting do.lrpc = FALSE. If do.lrpc = TRUE,

lrpc.adaptive specifies whether to use the non-adaptive estimator in (6.14) or the ACLIME

estimator. The list tuning.args supplies arguments to the CV or eBIC procedures, including

the number of folds L (n.folds), the eBIC parameter α (penalty, see (6.23)) and the length of

the grid of values for λ and/or η (path.length). Finally, it is possible to set only a subset of the

arguments of common.args, var.args and tuning.args whereby the unspecified arguments are

set to their default values.

The factor adjustment (Step 1) and VAR parameter estimation (Step 2) functionalities can be
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accessed individually by calling fnets.factor.model and fnets.var, respectively. The latter is

equivalent to calling fnets with q = 0 and do.lrpc = FALSE. The former returns an object of

class fm which contains the entries of the fnets object in Table 6.1 that relate to the factor-driven

component only.

6.4.4 Network visualisation

Using the plot method available for the objects of class fnets, we can visualise the Granger

network N G induced by the estimated VAR parameter matrices, see the left panel of Figure 6.5.

plot(out, type = "granger", display = "network")

With display = "network", it plots an igraph object from igraph (Csardi et al., 2006). Setting

the argument type to "pc" or "lrpc", we can visualise N C given by the partial correlations of

VAR innovations or N L given by the long-run partial correlations of ξt. We can instead visualise

the networks as a heat map, with the edge weights colour-coded by setting display = "heatmap".

We plot N L as a heat map in the right panel of Figure 6.5 using the following command.

plot(out, type = "lrpc", display = "heatmap")

It is possible to directly produce an igraph object from the objects of class fnets via network

method as:

g <- network(out, type = "granger")$network

plot(g, layout = igraph::layout_in_circle(g),

vertex.color = grDevices::rainbow(1, alpha = 0.2), vertex.label = NA,

main = "Granger causal network")

This produces a plot identical to the left panel of Figure 6.5 using the igraph object g.

6.4.5 Forecasting

The fnets objects are supported by the predict method with which we can forecast the input

data n.ahead steps. For example, we can produce a one-step ahead forecast of Xn+1 as

pr <- predict(out, n.ahead = 1, fc.restricted = TRUE)

pr$forecast

The argument fc.restricted specifies whether to use the estimator χ̂res
n+h|n in (6.19) generated

under a restricted factor model (6.3), or χ̂unr
n+h|n in (6.18) generated without such a restriction.

Table 6.2 lists the entries from the output from predict.fnets. We can similarly produce

forecasts from fnets objects output from fnets.var, or fm objects from fnets.factor.model.
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Granger causal network Long-run partial correlation heatmap
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Figure 6.5: Estimated networks for data simulated as in Section 6.4.1. Left: Granger causal network N G.
A directed arrow from node i to node i′ indicates that variable i Granger causes node i′, and the edge
weights proportional to the size of estimated coefficients are visualised by the edge width. Right: Long-run
partial correlation network N L where the edge weights (i.e. partial correlations) are visualised by the
colour.

Table 6.2: Entries of the output from predict.fnets

Name Description Type

forecast h× p matrix containing the h-step ahead forecasts of Xt matrix
common.predict A list containing list

$is n× p matrix containing the in-sample estimator of χt
$fc h× p matrix containing the h-step ahead forecasts of χt
$h Input parameter
$r Factor number (only produced when fc.restricted = TRUE)

idio.predict A list containing is, fc and h, see common.predict list
mean.x Sample mean vector vector

6.4.6 Factor number estimation

It is of independent interest to estimate the number of factors (if any) in the input dataset.

The function factor.number provides access to the two methods for selecting q described in

Section 6.3.1. The following code calls the information criterion-based factor number estimation

method in (6.21), and prints the output:

fn <- factor.number(x, fm.restricted = FALSE)

print(fn)

Factor number selection

Factor model: unrestricted

Method: Information criterion
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Number of factors:

IC1: 2

IC2: 2

IC3: 3

IC4: 2

IC5: 2

IC6: 2

Calling plot(fn) returns Figure 6.3 which visualises the factor number estimators from six

information criteria implemented. Alternatively, we call the eigenvalue ratio-based method

in (6.22) as

fn <- factor.number(x, method = "er", fm.restricted = FALSE)

In this case, plot(fn) produces a plot of ER(b) against the candidate factor number b ∈ {1, . . . , q̄}.

6.4.7 Visualisation of tuning parameter selection procedures

The method for threshold selection discussed in Section 6.3.2 is implemented by the threshold

function, which returns objects of threshold class supported by print and plot methods.

th <- threshold(out$idio.var$beta)

th

Thresholded matrix

Threshold: 0.0297308643

Non-zero entries: 62/2500

The call plot(th) generates Figure 6.4. Additionally, we provide tools for visualising the tuning

parameter selection results adopted in Steps 2 and 3 of FNETS (see Section 6.3.3). These tools

are accessible from both fnets and fnets.var by calling the plot method with the argument

display = "tuning", e.g.

set.seed(111)

n <- 500

p <- 10

x <- sim.var(n, p)$data

out1 <- fnets(x, q = 0, var.order = 1:3, tuning.args = list(tuning = "cv"))

plot(out1, display = "tuning")

This generates the two plots reported in Figure 6.6 which visualise the CV errors computed as

described in Section 6.3.3.1 and, in particular, the left plot shows that the VAR order is correctly

129



CHAPTER 6. FACTOR-ADJUSTED NETWORK ESTIMATION AND FORECASTING FOR
HIGH-DIMENSIONAL TIME SERIES

selected by this approach. When tuning.args contains tuning = "bic", the results from the

eBIC method described in Section 6.3.3.2 adopted in Step 2, is similarly visualised in place of the

left panel of Figure 6.6.
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Figure 6.6: Plots of CV(λ,b) against λ with b ∈ {1,2,3} (left) and CV(η) against η (right). Vertical lines
denote where the minimum CV measure is attained with respect to λ and η, respectively.

6.5 Simulations

Here we apply the network estimation and forecasting methodologies from FNETS to datasets

simulated under a variety of settings, from Gaussian innovations ut and εt with (E1) ∆ = I
and (E2) ∆ 6= I, to (E4) heavy-tailed (t5) innovations with ∆= I, and when χt is generated from

(C1) fully dynamic or (C2) static factor models. In addition, we consider the ‘oracle’ setting (C0)

χt = 0 where, in the absence of the factor-driven component, the results obtained can serve as a

benchmark. We also include the factor-adjusted regression method of Fan et al. (2021) which is

referred to as FARM, and present the performance of their estimator β̂FARM of VAR parameters

and forecasts (see Appendix 6.5.1 for full descriptions). For each setting, 100 realisations are

generated. The complete simulation results are provided in Appendix D.3.

We also assess the performance of the methods for selecting tuning parameters such as the

threshold and VAR order discussed in Section 6.3. Additionally, we compare the adaptive and the

non-adaptive estimators in estimating ∆ and also investigate how their performance is carried

over to estimating Ω.
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6.5.1 Settings

For generating a VAR(d) process ξt, we first generate a directed Erdős-Rényi random graph N =
(V ,E ) on V = {1, . . . , p} with the link probability 1/p, and set entries of Ad such that Ad,ii′ = 0.275

when (i, i′) ∈ E and Ad,ii′ = 0 otherwise. Also, we set A` =O for `< d. The VAR innovations are

generated as below.

(E1) Gaussian with Γ= I.

(E2) Gaussian with Γ=∆−1, where δii = 1.5 for 1≤ i ≤ p, δii′ =−1/
√

didi′ if (i, i′) ∈ E C and

δii′ = 0 otherwise. Here, N C is an undirected Erdős-Rényi random graph on V with the link

probability 1/p, and di denotes the degree of the i-th node in E C. This model is taken from

Barigozzi and Brownlees (2019).

(E3) Gaussian with the covariance matrix Γ = ∆−1 such that δii = 1, δi,i+1 = δi+1,i = 0.6,

δi,i+2 = δi+2,i = 0.3, and δii′ = 0 for |i− i′| ≥ 3.

(E4) Heavy-tailed with
p

5/3 ·εit ∼iid t5 (such that Var(εit)= 1) and Γ= I.

We consider two models for the generation of factor-driven common component:

(C1) Taken from Forni et al. (2017), χit is generated as sum of q AR processes χit =∑q
j=1 ai j(1−αi jL)−1u jt, where ai j ∼iid U [−1,1] and αi j ∼iid U [−0.8,0.8] with U [a,b] denoting a

uniform distribution. This model does not admit a static factor model representation, and we

consider q = 2.

(C2) χit admits a static factor model representation as χit = ai
∑2
`=1λ

>
i`ft−`+1 with ft =

Dft−1 +ut; here, Ft = (f>t ,f>t−1)> ∈ Rr denotes the static factor with r = 2q, ft ∈ Rq the dynamic

factor and and ut = (u1t, . . . ,uqt)> the common shocks. The entries of the loadings λi` ∈ Rq are

generated i.i.d. from N (0,1), and D= 0.7·D0/Λmax(D0) where the off-diagonal entries of D0 ∈Rq×q

are generated i.i.d. from U [0,0.3] and its diagonal entries from U [0.5,0.8]. The multiplicative

factor ai is chosen for each realisation to keep sample estimate of Var(χit)/Var(ξit) at one. We fix

q = 2 (such that r = 4).

Additionally, we consider the following ‘oracle’ setting:

(C0) χt = 0, i.e. the idiosyncratic VAR process is directly observed as X= ξt.

We vary (n, p) ∈ {(100,50), (100,100), (200,50), (200,100), (500,100), (500,200)}. According to the

distribution of εt, we also vary the distribution of ut; under (E1) (E2) or (E3), u jt ∼iid N (0,1)

while under (E4),
p

5/3 ·u jt ∼iid t5. For each setting, we generate 100 realisations.

For comparison, we consider the FARM methodology of Fan et al. (2021), for factor-adjusted

regression modelling under a static factor model. We implement the factor-adjustment step

with the information criterion-based factor number estimator of Alessi et al. (2010) and, to the
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residuals from removing factors, we apply the Lasso to estimate the VAR parameters using the R

package glmnet (Friedman et al., 2010); the resulting estimator is referred to as β̂FARM. Also,

Fan et al. (2021) propose a forecasting methodology based on VAR modelling of the estimated

factors. We report the performance of FARM in estimating the VAR parameters and forecasting

χn+1, ξn+1 and Xn+1.

6.5.2 Estimation of β0 and Ω

In Tables D.3.1–D.3.4, we report the errors of β̂las, β̂DS and β̂FARM in estimating β0, and Ω̂las

and Ω̂DS (Ω̂ obtained with β̂
las and β̂DS, respectively) in estimating Ω. To assess the support

recovery performance of these estimators, we also report the true positive rate (TPR) when the

false positive rate (FPR) is set to be 0.05, and produce the corresponding receiver operating

characteristic (ROC) curves averaged over 100 realisations, see Figure 6.7 and also Figures D.3.1–

D.3.2 in Appendix D.3.
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Figure 6.7: Left: ROC curves of TPR against FPR for β̂las, β̂DS and β̂FARM in recovering the support of
β0 when χt is generated under (C0)–(C2) and ξt is generated under (E1) with varying n and p, averaged
over 100 realisations. Vertical lines indicate where FPR = 0.05. Right: ROC curves for Ω̂las and Ω̂DS in
recovering the support of Ω when χt is generated under (C1) and ξt is generated under (E1)–(E4) with
varying n and p.

Overall, we observe that with increasing n, the performance of all estimators improve accord-

ing to all metrics regardless of the data generating processes while increasing p has an adverse

effect. Generally, whether the factor-driven component admits a static representation as in (C2)

or not as in (C1), FNETS produces estimators of β0 that perform as well as those applied under

the oracle setting of (C0) with χt = 0. Also both β̂las and β̂DS outperform FARM in all settings,

and they perform very well in estimating the support of β0 (i.e. the edge set of N G) without any

thresholding in all scenarios. FARM tends to produce highly sparse estimators with low TPR (see

the left panel of Figure 6.7; averaged ROC curves are not necessarily monotonic as it contains

pointwise average TPR at given FPR). This may be attributed to the accumulation of errors in the

estimates of ξt, 1≤ t ≤ n, possibly leading to low signal-to-noise ratio when estimating the VAR
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parameters. When Γ=∆= I (as in (E1) and (E4)), FNETS performs similarly well in estimating

Ω regardless of the tail behaviour of εt and ut. When ∆ 6= I, it tends to incur larger errors in

estimating Ω compared to when ∆ = I, which is more noticeable in terms of support recovery

(RHS of Figure 6.7). As shown in Barigozzi et al. (2023), the support of Ω depends on the support

of β0 and ∆ in a complex way, and generally it is greater than the union of the latter two which

makes its estimation more challenging. This may be attributed to the difficulty in estimating

non-diagonal ∆ carried forward to the estimator of Ω.

6.5.3 Forecasting

We assess the performance of FNETS in estimating the best linear predictors χn+1|n by χ̂res
n+1|n

(‘restricted’) and χ̂unr
n+1|n (‘unrestricted’), ξn+1|n by ξ̂

las
t+1|t and ξ̂

DS
t+1|t (which denote the estimators

with Lasso and DS estimators of β0, respectively) and finally, Xn+1|n = χn+1|n +ξn+1|n by their

combinations.

In Tables D.3.6 (under (E1)) and D.3.10 (under (E2)–(E4)), we report the estimation errors of

a given forecast, say γ̂n+1|n, in estimating γn+1|n measured as

|γ̂n+1|n −γn+1|n|22
|γn+1|n|22

(6.24)

and additionally, report the in-sample estimation errors of χ̂t = χ̂res
t and χ̂t = χ̂unr

t measured as∑
t |χ̂t −χt|22/(

∑
t |χt|22). Tables D.3.7 (under (E1)) and Tables D.3.11 (under (E2)–(E4)) summarise

the forecasting errors measured by

|γ̂n+1|n −γn+1|n|∞
|γn+1|n|∞

. (6.25)

We also report the forecasting errors measured as

|γ̂n+1 −γn+1|22
|γn+1|2

, and (6.26)

|γ̂n+1 −γn+1|2∞
|γn+1|∞

, (6.27)

see Tables D.3.8, D.3.9 (under (E1)), D.3.12 and D.3.13 (under (E2)–(E4)). Additionally, Table D.3.5

contains results in the above error measures obtained from the benchmark case when Xt = ξt

under (C0) when ξt is generated according to (E1).

Under (C2), occasionally the best linear predictor χn+1|n has all its elements close to zero

and the small value of |χn+1|n|2 inflates the relative estimation error measured as in (6.24); this

phenomenon is not observed from the forecasting errors measured with (6.26).

For FNETS, the forecasting performance improves as n increases regardless of the error

measures. The estimation error for χn+1|n decreases with p while it increases for ξn+1|n, which is

due to that the factor-adjustment step enjoys the blessing of dimensionality while VAR estimation

tends to suffer from the increase of the dimensionality.
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The forecasting method based on the unrestricted GDFM exhibits some instabilities stemming

from the instability of the singular VAR equation system adopted for this purpose which, in

turn, may be attributed to the possible over-specification of the VAR order (Hörmann and Nisol,

2021). As such, the in-sample estimation and forecasting method based on the restricted GDFM

generally performs superior even when χt does not admit a static representation (under (C1)),

and the gap between the two forecasting methods gets wider when a static representation exists

(under (C2)) as n and p increase. In general, we do not observe any systematic effect of the

innovation distribution on the forecasting performance.

FARM performs reasonably well but suffers from lack of sample size when n = 100. When

n ≥ 200, it produces in-sample estimators of accuracy marginally better than χ̂res
t , but the

performance in estimating the VAR parameters carries forward to producing the forecast of ξn+1,

which results in worse forecasts of Xn+1 overall.

6.5.4 Threshold selection

We assess the performance of the adaptive threshold. We generate χt as in (C1) and fix d = 1 for

generating ξt and further, treat d as known. We consider (n, p) ∈ {(200,50), (200,100), (500,100), (500,200)}.

Then we estimate Ω using the thresholded Lasso estimator of A1 (see (6.11) and (6.13)) with

two choices of thresholds, t= tada generated as described in Section 6.3.2 and t= 0. To assess the

performance of Ω̂= [ω̂ii′ ] in recovering of the support ofΩ= [ωii′ ], i.e. {(i, i′) : ωii′ 6= 0}, we plot the

receiver operating characteristic (ROC) curves of true positive rate (TPR) against false positive

rate (FPR), where

TPR= |{(i, i′) : ω̂ii′ 6= 0 and ωii′ 6= 0}|
|{(i, i′) : ωii′ 6= 0}| and FPR= |{(i, i′) : ω̂ii′ 6= 0 and ωii′ = 0}|

|{(i, i′) : ωii′ = 0}| .

Tables 6.3 and 6.4 report the errors in estimating A1 andΩ when the threshold t= tada or t= 0

is applied to the estimator of A1 obtained by either the Lasso (6.11) or the DS (6.12) estimators.

With a matrix γ as an estimand we measure the estimation error of its estimator γ̂ using the

following (scaled) matrix norms:

LF = ‖γ̂−γ‖F

‖γ‖F
and L2 = ‖γ̂−γ‖

‖γ‖ .

Figure 6.8 plots the ROC curves averaged over 100 realisations when t = tada and t = 0.

When ∆= I under (E1), we see little improvement from adopting tada as the support recovery

performance is already good even without thresholding. However, when ∆ 6= I under (E3), the

adaptive threshold leads to improved support recovery especially when the sample size is large.

Tables 6.3 and 6.4 additionally report the errors in estimating A1 and Ω with and without

thresholding, where we see little change is brought by thresholding. In summary, we conclude

that the estimators already perform reasonably well without thresholding, and the adaptive

threshold tada brings marginal improvement in support recovery which is of interest in network

estimation.
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Table 6.3: Errors in estimating A1 with t ∈ {0,tada} in combination with the Lasso (6.11) and the DS (6.12)
estimators, measured by LF and L2, averaged over 100 realisations (with standard errors reported in
brackets). We also report the average TPR when FPR = 0.05 and the corresponding standard error.

t= 0 t= tada

β̂
las

β̂
DS

β̂
las

β̂
DS

Model n p TPR LF L2 TPR LF L2 TPR LF L2 TPR LF L2

(E1) 200 50 0.9681 0.6234 0.7204 0.8991 0.4299 0.3747 0.9413 0.6226 0.7204 0.6932 0.4487 0.3960
(0.050) (0.081) (0.118) (0.096) (0.280) (0.225) (0.112) (0.088) (0.121) (0.216) (0.256) (0.206)

200 100 0.9398 0.6696 0.8113 0.8810 0.5772 0.4362 0.8832 0.6710 0.8132 0.6491 0.6025 0.4642
(0.091) (0.096) (0.096) (0.094) (0.449) (0.271) (0.182) (0.108) (0.100) (0.246) (0.418) (0.250)

500 100 0.9990 0.4648 0.6682 0.9304 0.2740 0.2604 0.9971 0.4608 0.6645 0.7237 0.2806 0.2699
(0.003) (0.054) (0.094) (0.065) (0.158) (0.138) (0.010) (0.056) (0.095) (0.199) (0.133) (0.111)

500 200 0.9986 0.5068 0.7729 0.9167 0.3680 0.3882 0.9964 0.5023 0.7637 0.7095 0.3889 0.4014
(0.003) (0.058) (0.081) (0.076) (0.196) (0.134) (0.006) (0.061) (0.082) (0.256) (0.187) (0.126)

(E3) 200 50 0.9595 0.6375 0.7075 0.8828 0.4673 0.4280 0.9442 0.6356 0.7079 0.6720 0.4835 0.4433
(0.053) (0.077) (0.094) (0.107) (0.324) (0.255) (0.064) (0.079) (0.096) (0.212) (0.303) (0.241)

200 100 0.9624 0.6200 0.6909 0.8093 0.4519 0.4090 0.9435 0.6175 0.6913 0.5903 0.4765 0.4324
(0.072) (0.079) (0.089) (0.100) (0.385) (0.251) (0.093) (0.082) (0.090) (0.182) (0.371) (0.243)

500 100 0.9970 0.4657 0.5533 0.9304 0.3434 0.3621 0.9958 0.4638 0.5525 0.8384 0.3370 0.3634
(0.006) (0.056) (0.076) (0.089) (0.158) (0.153) (0.008) (0.058) (0.077) (0.182) (0.140) (0.144)

500 200 0.9981 0.4702 0.5658 0.9205 0.3684 0.3740 0.9945 0.4686 0.5665 0.8154 0.3663 0.3803
(0.003) (0.065) (0.091) (0.088) (0.182) (0.162) (0.014) (0.068) (0.093) (0.205) (0.159) (0.145)

Table 6.4: Errors in estimating Ω with t ∈ {0,tada} applied to the estimator of A1 in combination with
the Lasso (6.11) and the DS (6.12) estimators, measured by LF and L2, averaged over 100 realisations
(with standard errors reported in brackets). We also report the average TPR when FPR = 0.05 and the
corresponding standard error.

t= 0 t= tada

β̂
las

β̂
DS

β̂
las

β̂
DS

Model n p TPR LF L2 TPR LF L2 TPR LF L2 TPR LF L2

(E1) 200 50 0.8714 0.4143 0.5553 0.8622 0.4217 0.5691 0.8685 0.4145 0.5559 0.8640 0.4217 0.5695
(0.108) (0.048) (0.066) (0.119) (0.054) (0.070) (0.118) (0.049) (0.067) (0.121) (0.055) (0.070)

200 100 0.8827 0.4320 0.5890 0.8961 0.4379 0.5949 0.8684 0.4326 0.5892 0.8867 0.4386 0.5960
(0.084) (0.050) (0.072) (0.080) (0.046) (0.065) (0.139) (0.052) (0.074) (0.120) (0.048) (0.066)

500 100 0.9909 0.3311 0.4916 0.9886 0.3391 0.4989 0.9928 0.3303 0.4901 0.9901 0.3380 0.4975
(0.016) (0.031) (0.069) (0.021) (0.036) (0.065) (0.015) (0.032) (0.069) (0.018) (0.037) (0.066)

500 200 0.9942 0.3520 0.5287 0.9916 0.3511 0.5400 0.9954 0.3512 0.5273 0.9672 0.3528 0.5399
(0.009) (0.038) (0.054) (0.018) (0.045) (0.065) (0.008) (0.039) (0.055) (0.129) (0.055) (0.072)

(E3) 200 50 0.4074 0.7831 0.8353 0.4027 0.7942 0.8335 0.4063 0.7832 0.8353 0.4045 0.7943 0.8336
(0.073) (0.089) (0.072) (0.087) (0.079) (0.034) (0.072) (0.089) (0.072) (0.089) (0.079) (0.034)

200 100 0.4178 0.8406 0.8690 0.3541 0.9119 0.8879 0.4486 0.8407 0.8690 0.4038 0.9120 0.8880
(0.091) (0.108) (0.036) (0.107) (0.126) (0.045) (0.091) (0.108) (0.036) (0.123) (0.126) (0.045)

500 100 0.5405 0.8267 0.8118 0.5632 0.7910 0.7953 0.5406 0.8267 0.8117 0.5628 0.7910 0.7951
(0.111) (0.125) (0.047) (0.122) (0.166) (0.062) (0.111) (0.125) (0.047) (0.123) (0.166) (0.062)

500 200 0.5951 0.8713 0.8519 0.6487 0.8184 0.8259 0.6918 0.8713 0.8519 0.7101 0.8184 0.8258
(0.175) (0.165) (0.088) (0.159) (0.182) (0.090) (0.148) (0.165) (0.088) (0.122) (0.182) (0.090)

6.5.5 VAR order selection

We compare the performance of the CV and eBIC methods proposed in Section 6.3.3 for selecting

the order of the VAR process. Here, we consider the case when χt = 0 (setting (C0)) and when ξt

is generated under (E1) with d ∈ {1,3}. We set (n, p) ∈ {(200,10), (200,20), (500,10), (500,20)} where

the range of p is in line with the simulation studies conducted in the relevant literature (see e.g.

Zheng (2022)). We consider {1,2,3,4} as the candidate VAR orders. Figure 6.9 and Table 6.5 show

that CV works reasonably well regardless of d ∈ {1,3}, with slightly better performance observed
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Figure 6.8: ROC curves of TPR against FPR for β̃(t) (6.13) (with β̂ = β̂las) when t = tada and t = 0 in
recovering the support of Ω, averaged over 100 realisations. Vertical lines indicate FPR = 0.05

together with the DS estimator. On the other hand, eBIC tends to over-estimate the VAR order

when d = 1 while under-estimating it when d = 3, and hence is less reliable compared to the CV

method.

Table 6.5: Distribution of d̂−d over 100 realisations when the VAR order is selected by the CV and eBIC
methods in combination with the Lasso (6.11) and the DS (6.12) estimators.

CV eBIC

β̂
las

β̂
DS

β̂
las

β̂
DS

d n p 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

1 200 10 81 10 4 5 91 6 2 1 64 17 11 8 64 12 16 8
200 20 94 6 0 0 94 5 1 0 68 10 9 13 75 10 7 8
500 10 94 5 1 0 86 7 4 3 65 17 11 7 65 18 9 8
500 20 97 2 0 1 98 1 1 0 70 15 8 7 64 14 10 12

-2 -1 0 1 -2 -1 0 1 -2 -1 0 1 -2 -1 0 1

3 200 10 0 0 77 23 0 0 78 22 27 3 49 21 30 6 49 15
200 20 0 0 97 3 0 0 85 15 32 1 48 19 31 2 58 9
500 10 0 0 76 24 0 0 83 17 30 4 43 23 29 2 40 29
500 20 0 0 74 26 0 0 97 3 29 3 45 23 25 4 53 18

136



6.6. DATA EXAMPLES

0
25
50
75

100

0 1 2 3

n = 200, p = 10, d = 1

0
25
50
75

100

-2 -1 0 1

method
BIC, DS
BIC, Lasso
CV, DS
CV, Lasso

n = 200, p = 10, d = 3

0
25
50
75

100

0 1 2 3

n = 200, p = 20, d = 1

0
25
50
75

100

-2 -1 0 1

n = 200, p = 20, d = 3

0
25
50
75

100

0 1 2 3

n = 500, p = 10, d = 1

0
25
50
75

100

-2 -1 0 1

n = 500, p = 10, d = 3

0
25
50
75

100

0 1 2 3

n = 500, p = 20, d = 1

0
25
50
75

100

-2 -1 0 1

n = 500, p = 20, d = 3

Figure 6.9: Box plots of d̂−d over 100 realisations when the VAR order is selected by the CV and eBIC
methods in combination with the Lasso (6.11) and the DS (6.12) estimators.

6.5.6 CLIME vs. ACLIME estimators

We compare the performance of the adaptive and non-adaptive estimators for the VAR innovation

precision matrix ∆ and its impact on the estimation of Ω, the inverse of the long-run covariance

matrix of the data (see Section 6.2.3.3). We generate χt as in (C1), fix d = 1 and treat it as known

and consider (n, p) ∈ {(200,50), (200,100), (500,100), (500,200)}.

In Tables 6.6 and 6.7, we report the errors of ∆ and Ω. We consider both the Lasso (6.11) and

DS (6.12) estimators of VAR parameters, and CLIME and ACLIME estimators for ∆, which lead

to four different estimators for ∆ and Ω, respectively. Overall, we observe that with increasing

n, the performance of all estimators improve according to all metrics regardless of the scenar-

ios (E1) or (E3), while increasing p has an adverse effect. The two methods perform similarly in

setting (E1) when ∆= I. There is marginal improvement for adopting the ACLIME estimator

noticeable under (E3), particularly in TPR. Figures 6.10 and 6.11 shows the ROC curves for the

support recovery of ∆ and Ω when the Lasso estimator is used.

6.6 Data examples

We give demonstrations of the FNETS methodology for network estimation and forecasting on

two real sets of data.
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Table 6.6: Errors in estimating ∆ using CLIME and ACLIME estimators, measured by LF and L2,
averaged over 100 realisations (with standard errors reported in brackets). We also report the average
TPR when FPR = 0.05 and the corresponding standard errors.

CLIME ACLIME

β̂
las

β̂
DS

β̂
las

β̂
DS

Model n p TPR LF L2 TPR LF L2 TPR LF L2 TPR LF L2

(E1) 200 50 1.000 0.215 0.489 1.000 0.220 0.497 1.000 0.207 0.472 1.000 0.209 0.469
(0.000) (0.047) (0.223) (0.000) (0.047) (0.182) (0.002) (0.043) (0.173) (0.000) (0.041) (0.116)

200 100 1.000 0.235 0.513 1.000 0.241 0.521 1.000 0.223 0.507 1.000 0.228 0.518
(0.000) (0.036) (0.089) (0.000) (0.036) (0.107) (0.000) (0.033) (0.084) (0.000) (0.034) (0.099)

500 100 1.000 0.181 0.458 1.000 0.183 0.466 1.000 0.176 0.452 1.000 0.178 0.458
(0.000) (0.022) (0.062) (0.000) (0.029) (0.087) (0.000) (0.022) (0.052) (0.000) (0.028) (0.069)

500 200 1.000 0.198 0.510 1.000 0.193 0.492 1.000 0.187 0.505 1.000 0.182 0.489
(0.000) (0.027) (0.066) (0.000) (0.035) (0.065) (0.000) (0.026) (0.056) (0.000) (0.033) (0.057)

(E3) 200 50 0.659 0.422 0.816 0.662 0.391 0.608 0.682 0.397 0.706 0.687 0.380 0.600
(0.058) (0.101) (0.654) (0.057) (0.031) (0.144) (0.055) (0.056) (0.351) (0.054) (0.030) (0.176)

200 100 0.639 0.417 0.695 0.637 0.420 0.720 0.669 0.404 0.663 0.668 0.405 0.684
(0.044) (0.039) (0.205) (0.042) (0.043) (0.249) (0.041) (0.037) (0.162) (0.039) (0.037) (0.193)

500 100 0.730 0.372 0.764 0.726 0.499 1.708 0.735 0.358 0.650 0.734 0.361 0.718
(0.035) (0.097) (0.828) (0.039) (1.101) (7.586) (0.032) (0.038) (0.322) (0.031) (0.056) (0.517)

500 200 0.729 0.370 0.711 0.728 0.362 0.736 0.737 0.363 0.647 0.737 0.354 0.673
(0.028) (0.035) (0.355) (0.028) (0.035) (0.384) (0.023) (0.026) (0.239) (0.024) (0.028) (0.279)

Table 6.7: Errors in estimating Ω using CLIME and ACLIME estimators of ∆, measured by LF and L2,
averaged over 100 realisations (with standard errors reported in brackets). We also report the average
TPR when FPR = 0.05 and the corresponding standard errors.

CLIME ACLIME

β̂
las

β̂
DS

β̂
las

β̂
DS

Model n p TPR LF L2 TPR LF L2 TPR LF L2 TPR LF L2

(E1) 200 50 0.871 0.415 0.557 0.862 0.422 0.571 0.867 0.411 0.558 0.856 0.417 0.570
(0.108) (0.050) (0.070) (0.119) (0.055) (0.080) (0.106) (0.051) (0.088) (0.114) (0.053) (0.083)

200 100 0.883 0.432 0.589 0.896 0.438 0.595 0.868 0.423 0.583 0.883 0.429 0.587
(0.084) (0.050) (0.072) (0.080) (0.046) (0.065) (0.088) (0.048) (0.077) (0.085) (0.045) (0.061)

500 100 0.991 0.331 0.492 0.989 0.339 0.499 0.991 0.328 0.490 0.989 0.337 0.498
(0.016) (0.031) (0.069) (0.021) (0.036) (0.065) (0.015) (0.033) (0.070) (0.019) (0.036) (0.067)

500 200 0.994 0.352 0.529 0.992 0.351 0.540 0.994 0.344 0.525 0.990 0.342 0.537
(0.009) (0.038) (0.054) (0.018) (0.045) (0.065) (0.009) (0.038) (0.056) (0.014) (0.044) (0.068)

(E3) 200 50 0.509 0.532 0.724 0.510 0.514 0.664 0.504 0.518 0.679 0.507 0.506 0.658
(0.078) (0.071) (0.243) (0.068) (0.043) (0.137) (0.071) (0.055) (0.162) (0.063) (0.043) (0.141)

200 100 0.511 0.541 0.683 0.513 0.542 0.695 0.509 0.531 0.674 0.504 0.531 0.679
(0.059) (0.047) (0.082) (0.065) (0.051) (0.093) (0.062) (0.045) (0.084) (0.061) (0.046) (0.084)

500 100 0.640 0.450 0.655 0.624 0.544 1.099 0.642 0.441 0.597 0.637 0.440 0.617
(0.066) (0.072) (0.402) (0.079) (0.866) (3.714) (0.059) (0.036) (0.118) (0.060) (0.047) (0.204)

500 200 0.670 0.461 0.630 0.658 0.450 0.630 0.677 0.456 0.612 0.661 0.445 0.605
(0.045) (0.041) (0.116) (0.043) (0.040) (0.117) (0.041) (0.036) (0.075) (0.037) (0.037) (0.082)
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Figure 6.10: ROC curves of TPR against FPR for ∆̂ with CLIME and ACLIME estimators in recovering
the support of ∆, averaged over 100 realisations. Vertical lines indicate FPR = 0.05.
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Figure 6.11: ROC curves of TPR against FPR for Ω̂ with CLIME and ACLIME estimators in recovering
the support of Ω, averaged over 100 realisations. Vertical lines indicate FPR = 0.05.
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6.6.1 Energy price data

Electricity is more difficult to store than physical commodities which results in high volatility and

seasonality in spot prices (Han et al., 2022). Global market deregulation has increased the volume

of electricity trading, which promotes the development of better forecasting and risk management

methods. We analyse a dataset of node-specific prices in the PJM (Pennsylvania, New Jersey and

Maryland) power pool area in the United States, accessed using dataminer2.pjm.com. There are

four node types in the panel, which are Zone, Aggregate, Hub and Extra High Voltage (EHV); for

their definitions, see Table D.2.1 and for the names and types of p = 50 nodes, see Table D.2.3,

all found in Section D.2.1. The series we model is the sum of the real time congestion price and

marginal loss price or, equivalently, the difference between the spot price at a given location and

the overall system price, where the latter can be thought of as an observed factor in the local spot

price. These are obtained as hourly prices and then averaged over each day as per Maciejowska

and Weron (2013). We remove any short-term seasonality by subtracting a separate mean for

each day of the week. Since the energy prices may take negative values, we adopt the inverse

hyperbolic sine transformation as in Uniejewski et al. (2017) for variance stabilisation.

6.6.1.1 Network analysis

We analyse the data collected between 01/01/2021 and 19/07/2021 (n = 200). The information

criterion in (6.21) returns a single factor (q̂ = 1), and d̂ = 1 is selected by CV. See Figure 6.14 for

the heat maps visualising the three networks N G, N C and N L described in Section 6.2.2, which

are produced by fnets.

Granger causal heatmap
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Figure 6.12: Heat maps of the three networks underlying the energy price data collected over the
period 01/01/2021–19/07/2021. Left: N G obtained with the Lasso estimator (6.11) combined with the
adaptive threshold tada. Middle: N C obtained with the ACLIME estimator of ∆. Right: N L obtained by
combining the estimators of VAR parameters and ∆. In the axis labels, Zone-type nodes are coloured in
red, Aggregate-types in green, Hub-types in blue and EHV-types in purple.

The non-zero entries of the VAR parameter matrix estimates tend to take positive values,

indicating that high energy prices are persistent and spill over to other nodes. Considering the

node types, Hub-type nodes (blue) tend to have out-going edges to nodes of different types, which
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reflects the behaviour of the electrical transmission system. Some Zone-type nodes (red) have

several in-coming edges from Aggregate-types (green) and Hub-types, while EHV-types (purple)

have few edges in N G, which carries forward to N L where we observe that those Zone-type

nodes have strong long-run correlations with other nodes while EHV-types do not.

6.6.1.2 Forecasting
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Figure 6.13: Time series plots of real-time congestion and marginal loss prices at 50 nodes in the PJM
interchange, averaged daily over 2021. See Section 6.6.1 for a full description.

We perform a rolling window-based forecasting exercise. Starting from T = 200, we forecast

XT+1 as X̂fnets
T+1|T (n)= χ̂T+1|T (n)+ ξ̂T+1|T (n), where χ̂T+1|T (n) (resp. ξ̂T+1|T (n)) denotes the forecast

of χT+1 (resp. ξT+1) using the preceding n data points {Xt, T−n+1≤ t ≤ T}. We set n = 200. After

the forecast X̂fnets
T+1|T (n) is generated, we update T ← T +1 and repeat the above procedure until

T = 364 (the penultimate day of 2021). For X̂fnets
T+1|T (n), we consider six forecasts from the fnets

methodology. The first two use q = 0 and fit a sparse VAR to the observed series, differing in

their estimation methods: the first uses the Lasso, and the second the Dantzig selector. For the

other four, we use the forecasting methods derived under the restricted factor model, denoted

by χ̂res
T+1|T (n), and unrestricted (by χ̂unr

T+1|T (n)) factor model. For ξ̂T+1|T (n), we report forecasts

from the Lasso (ξ̂
las
T+1|T (n)) and Dantzig selector (ξ̂

DS
T+1|T (n)) estimators of VAR transition matrices.
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Selecting with the eBIC, we use the order d = 1 for both. For comparison, we report the forecast

produced by a univariate AR model, denoted by X̂AR
T+1|T (n), where the order is selected by AIC.

We evaluate the performance of X̂T+1|T in forecasting XT+1 using scaled average and maximum

absolute errors:

FEavg
T+1 =

∣∣XT+1 − X̂T+1|T
∣∣2
2

|XT+1|22
and FEmax

T+1 =
∣∣XT+1 − X̂T+1|T

∣∣∞
|XT+1|∞

,

See Table 6.9 for the summary of the forecasting results based on FEavg
T+1 and FEmax

T+1.

Among the fnets forecasts, ξ̂
las
T+1|T (n) with q = 0 performs the best. This outperforms X̂AR

T+1|T (n)

in both metrics in terms of the mean and variance, but not in terms of the median, reflecting

the induced bias from the Lasso. The forecasting method based on the unrestricted GDFM

shows large instabilities and generally performs worse than the one based on the restricted

GDFM, particularly when combined with the Dantzig selector estimator. Inspecting Figure 6.13,

we suggest that this is due to structural instability in the data, noting that strong concerted

movements are present towards the ends of the sample. This causes shrinkage in the common

forecast, and the large residuals feed through to the idiosyncratic component, causing singularity.

We can conclude that the the restricted version is fairly robust to outliers, while the unrestricted

method is not. The resulting factor models perform similarly to the q = 0 case, giving some

evidence that a single factor exists in the data.

Table 6.8: Energy data: Mean, median and standard errors of FEavg
T+1 and FEmax

T+1 on days in 2021 for
X̂fnets

T+1|T (n) (in the first four columns), in comparison with AR forecast with d selected by AIC; VAR orders

are set to be d = 1 for β̂las and β̂DS. Best performers for each metric are denoted in bold.

FNETS

q = 0 Restricted Unrestricted

β̂
las

β̂
DS

β̂
las

β̂
DS

β̂
las

β̂
DS AR

FEavg Mean 0.8462 0.8655 0.8752 0.8914 5.1159 4.5259 0.8494
Median 0.8100 0.8223 0.7931 0.8053 0.9527 0.9860 0.6749

SE 0.4211 0.4850 0.6064 0.6101 13.3179 11.7680 0.6817

FEmax Mean 0.9284 0.9394 0.9333 0.9474 1.4388 1.4766 0.9373
Median 0.9206 0.9368 0.9068 0.9115 1.0225 1.0266 0.8851

SE 0.1878 0.2118 0.2270 0.2436 1.1959 1.1504 0.3064

6.6.2 Equity volatility measures

We investigate the interconnectedness in a panel of volatility measures and evaluate its out-of-

sample forecasting performance using FNETS. For this purpose, we consider a panel of p = 46

stock prices retrieved from the Wharton Research Data Service, of US companies which are
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all classified as ‘financials’ according to the Global Industry Classification Standard; a list of

company names and industry groups are found in Appendix D.2.2. The dataset spans the period

between January 3, 2000 and December 31, 2012 (3267 trading days). Following Diebold and

Yılmaz (2014), we measure the volatility using the high-low range as σ2
it = 0.361(phigh

it − plow
it )2

where phigh
it and plow

it denote, respectively, the maximum and the minimum log-price of stock i on

day t, and set X it = log(σ2
it).

6.6.2.1 Network analysis

We focus on the period 03/2006–02/2010 corresponding to the Great Financial Crisis. We partition

the data into four segments of length n = 252 each (corresponding to the number of trading days

in a single year) and on each segment, we apply FNETS to estimate the three networks N G, N C

and N L described in Section 6.2.2.

Each row of Figure 6.14 plots the heat maps of the three matrices underlying the three

networks of interest. From all four segments, the CV-based approach returns d = 1 from the VAR

orders {1, . . . ,5} when applied with the Lasso estimator of VAR parameters. Hence from left to

right, they represent the Lasso estimator Â1 = (β̂las)>, partial correlations from the corresponding

∆̂ and long-run partial correlations from Ω̂ (with their diagonals set to be zero). The locations of

the non-zero elements coincide with the edge sets of the corresponding networks, and the hues

represent the (signed) edge weights.

Prior to March 2007, all networks exhibit a low degree of interconnectedness but the number

of edges increases considerably in 03/2007–02/2008 due mainly to an overall increase in dynamic

dependence and a prominent role of banks (blue group) not only in N G but also in N C. In

03/2008–02/2009, the companies belonging to the insurance sector (red group) play a central role

and in 03/2009–02/2010, the companies become highly interconnected with two particular firms

having many outgoing edges in N G. Also, while most edges in N L, which captures the overall

long-run dependence, have positive weights across time and companies, their weights become

negative in this last segment.

6.6.2.2 Forecasting

We perform a rolling window-based forecasting exercise on the trading days in 2012. Starting from

T = 3016 (the first trading day in 2012), we forecast XT+1 as X̂fnets
T+1|T (n) = χ̂T+1|T (n)+ ξ̂T+1|T (n),

where χ̂T+1|T (n) (resp. ξ̂T+1|T (n)) denotes the forecast of χT+1 (resp. ξT+1) using the preceding n

data points {Xt, T −n+1≤ t ≤ T}. We set n = 252. After the forecast X̂fnets
T+1|T (n) is generated, we

update T ← T +1 and repeat the above procedure until T = 3267 (the last trading day in 2012).

For χ̂T+1|T (n), we consider the forecasting methods derived under restricted and unrestricted

specifications, and for ξ̂T+1|T (n), forecasts obtained with the Lasso (ξ̂
las
T+1|T (n)) and DS (ξ̂

DS
T+1|T (n))

estimators of VAR transition matrices. For Lasso estimation, fitting a VAR model of a large lag

can lead to slow convergence, so we set the VAR order d = 1; for DS, we consider d ∈ {1, . . . ,5}
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Figure 6.14: Heat maps of the estimators of the VAR transition matrices via Lasso, β̂las, partial correla-
tions from ∆̂ and long-run partial correlations from Ω̂ (left to right), which in turn estimate the networks
N G, N C and N L, respectively, over three selected periods. The grouping of the companies according to
their industry classifications are indicated by the axis label colours. The heat maps in the left column
are in the scale of [−0.81,0.81] while the others are in the scale of [−1,1], with red hues denoting large
positive values and blue hues large negative values.

where all lags lead to similar results. For comparison, we report the forecasting performance

of FARM proposed in Fan et al. (2021). It first fits an AR model to each of the p series (‘AR’),

projects the residuals on their principal components as in a static factor model approach, and then
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6.7. SUMMARY

Table 6.9: Mean, median and standard errors of FEavg
T+1 and FEmax

T+1 on the trading days in 2012 for
X̂fnets

T+1|T (n) (in the first four columns), in comparison with AR and FARM (Fan et al., 2021) forecasts; VAR

orders are set to be d = 1 for β̂las and d = 5 for β̂DS and FARM. Best performers for each metric are denoted
in bold.

FNETS

Restricted Unrestricted

β̂
las

β̂
DS

β̂
las

β̂
DS AR FARM

FEavg Mean 0.7258 0.7651 0.7466 0.9665 0.7572 0.7616
Median 0.6029 0.6163 0.6412 0.6756 0.6511 0.6243

SE 0.4929 0.5081 0.3748 1.088 0.4162 0.4946

FEmax Mean 0.8433 0.8752 0.8729 0.9359 0.879 0.8745
Median 0.7925 0.8217 0.8088 0.8708 0.8437 0.8259

SE 0.2331 0.2406 0.2246 0.3246 0.2169 0.2337

fits VAR models to what remains via Lasso. Combining the three steps gives the final forecast

X̂Farm
T+1|T (n), where we set the first step AR order to be one and the third step VAR order to d = 5.

The forecast produced by the first step univariate AR modelling, denoted by X̂AR
T+1|T (n), is also

included in the comparative study.

See Table 6.9 for the summary of the forecasting results based on FEavg
T+1 and FEmax

T+1. Among

the forecasts generated by FNETS, the combination of χ̂res
T+1|T (n) and ξ̂

las
T+1|T (n) performs the best

in this exercise, which outperforms X̂AR
T+1|T (n) and X̂Farm

T+1|T (n) according to both FEavg and FEmax

on average. As seen in Section 6.5, the forecasting method based on the unrestricted GDFM

shows instabilities and generally performs worse than the one based on the restricted GDFM,

particularly in combination with the DS estimator.

6.7 Summary

We introduce the R package fnets which implements the FNETS methodology proposed by

Barigozzi et al. (2023) for network estimation and forecasting of high-dimensional time series

exhibiting strong correlations. It further implements data-driven methods for selecting tuning

parameters, and provides tools for high-dimensional time series factor modelling under the

GDFM which are of independent interest. The efficacy of our package is demonstrated on both

real and simulated datasets.
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7
DISCUSSION

In this thesis, we have made methodological contributions to data segmentation and high-

dimensional time series analysis. Here we review these contributions and discuss directions

for future work.

In Chapter 3 we propose MOSEG, a high-dimensional data segmentation methodology for

detecting multiple changes in the parameters under a linear regression model. This is a two-step

procedure, which refines initial estimators obtained after scanning for differences in parameter

estimates. An extension, MOSEG.MS, adapts to multiscale changes. We show consistency under

serial dependence and heavy tails, and show (near-)minimax optimality under Gaussianity.

There are many ways this could be extended. We have considered perhaps the simplest

high-dimensional regression model, and the algorithm here could be applied in more general

settings, for example Generalised Linear models under structural assumptions, or indeed any

model subject to penalised M-estimation.

In Chapter 4 we propose methods to detect and locate multiple change points in the second-

order structure of multivariate time series approximated by a vector autoregressive model. We

derive score- and Wald-type moving window procedures specific to this problem, and show these

consistently estimate change points, extending the results of Reckrühm (2019) and Kirch and

Reckrühm (2022). We also address challenges in terms of computation, detectability, and scale.

We also use a projection for dimension reduction, which can be combined with a parametric

bootstrap, to allow the procedure to be used with panels of larger dimension.

The extensions we have made to the MOSUM procedure are generic, so can be used for other

models by specifying a different estimating function. An interesting direction of future research

is to allow for penalised estimation procedures, particularly `2 regularisation through a ridge

penalty, which would allow for the analysis of models with greater dimensions. It remains to
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CHAPTER 7. DISCUSSION

prove the consistency of the multiscale algorithm under a true multiscale assumption on the

changes.

In Chapter 5 we propose a method for diffusion index forecasting under non-stationarity. This

consists of two moving sum data segmentation methods for factor models: one for VAR dynamics,

and the other for factor-augmented regression. We show that these consistently detect and

locate changes. We highlight extensions to the methodology to reduce computational cost, and to

address undetectable or multiscale changes. We then use a forecasting method with data-adaptive

weights, which take the estimated change points into account. Through an application to a real

macroeconomic dataset we show that our methodology can give superior forecast performance to

the popularly-used rolling window method, while adding little computational burden.

Extending this method to the factor-augmented vector autoregression model would be straight-

forward. It would be of theoretical interest to derive the optimal localisation and detection rates

in this setting, and to compare the rates of our method against these. The proposed weighted

schemes could be used with other factor models, and these could be compared empirically. Fur-

ther investigation of how the procedure works in practice, across different macroeconomic and

financial datasets, would be of great interest. Finally, incorporating the estimated change points

into Kalman filter-type estimation procedures would improve the potential for nowcasting.

In Chapter 6 we introduce the R package fnets which implements the FNETS methodology

proposed by Barigozzi et al. (2023) for network estimation and forecasting of high-dimensional

time series exhibiting strong correlations. It further implements data-driven methods for selecting

tuning parameters, and provides tools for high-dimensional time series factor modelling under the

GDFM which are of independent interest. The efficacy of the package, and the whole methodology,

is demonstrated on both real and simulated datasets.

The question of how to produce forecasts from the model, given non-stationary behaviour, re-

mains. Using the weighted estimation techniques from Chapter 5 is one route, though accounting

for asynchronous breaks in the common and idiosyncratic components poses a challenge when

the processes are latent.

Across Chapters 3, 4, and 5, consistency results are given for the proposed change point

estimation procedures. Corollaries 3.3 and 3.5 provide finite-sample guarantees. The proofs

establish that certain events hold with high probability, and then conditioning on these events,

the estimation procedures are proven consistent. Theorems 4.2, B.2, 5.3, and 5.4 are shown to be

asymptotically consistent, where the error shrinks as the sample size tends to infinity.
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A
APPENDIX TO HIGH-DIMENSIONAL DATA SEGMENTATION IN

REGRESSION SETTINGS PERMITTING HEAVY TAILS AND TEMPORAL

DEPENDENCE

A.1 Proofs

In what follows, for any vector a ∈Rp and a set A ⊂ {1, . . . , p}, we denote by a(A )= (ai, i ∈A )> the

sub-vector of a supported on A . We write the population counterpart of Tk(G) with β∗
s,e defined

in (3.5) as

T∗
k (G)=

√
G
2

∣∣∣β∗
k,k+G −β∗

k−G,k

∣∣∣
2

.

Further, we write Ss,e = supp(β∗
s,e).

A.1.1 Proof of Theorem 3.1

A.1.1.1 Supporting lemmas

Lemma A.1.1. We have

T∗
k (G)=

{ 1p
2G

(G−|k−θ j|)δ j if {k−G+1, . . . ,k+G}∩Θ= {θ j},

0 if {k−G+1, . . . ,k+G}∩Θ=;

Lemma A.1.2. Define ∆s,e = β̂s,e −β∗
s,e. With λ ≥ 4CDEVρn,p, we have P(B) ≥ 1−P(R(1) ∩D(2))

where

B =
{∣∣∆s,e

∣∣
2 ≤

12
p

2sλ
ω
p

e− s
and

∣∣∆s,e(S c
s,e)

∣∣
1 ≤ 3

∣∣∆s,e(Ss,e)
∣∣
1 for all 0≤ s < e ≤ n

with |{s+1, . . . , e}∩Θ| ≤ 1 and e− s ≥ C0 max
[
(ω−1s log(p))

1
1−τ ,ρ2

n,p

]}
.

149
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REGRESSION SETTINGS PERMITTING HEAVY TAILS AND TEMPORAL DEPENDENCE

Proof. For given 0≤ s < e ≤ n, we have

e∑
t=s+1

(
Yt −x>

t β̂s,e
)2 +λpe− s |β̂s,e|1 ≤

e∑
t=s+1

(
Yt −x>

t β
∗
s,e

)2 +λpe− s |β∗
s,e|1,

from which it follows that

λ
p

e− s
(|β∗

s,e|1 −|β̂s,e|1
)≥ e∑

t=s+1

[
(x>

t β̂s,e)2 − (x>
t β

∗
s,e)2 −2Ytx>

t (β̂s,e −β∗
s,e)

]
=

e∑
t=s+1

[
∆>

s,extx>
t ∆s,e −2(Yt −x>

t β
∗
s,e)x>

t ∆s,e
]
.

Then, noting that β∗
s,e(S c

s,e)= 0,

1p
e− s

e∑
t=s+1

[
∆>

s,extx>
t ∆s,e −2(Yt −x>

t β
∗
s,e)x>

t ∆s,e
]+λ ∣∣β̂s,e(S c

s,e)
∣∣
1

≤λ
(∣∣β∗

s,e(Ss,e)
∣∣
1 −

∣∣β̂s,e(Ss,e)
∣∣
1

)
≤λ ∣∣∆s,e(Ss,e)

∣∣
1 . (A.1.1)

Since λ≥ 4CDEVρn,p, it follows from (A.1.1) that on D(2),

1p
e− s

e∑
t=s+1

∆>
s,extx>

t ∆s,e − λ

2

∣∣∆s,e
∣∣
1 +λ

∣∣∆s,e(S c
s,e)

∣∣
1 ≤λ

∣∣∆s,e(Ss,e)
∣∣
1 ,

∴ 0≤ 1p
e− s

e∑
t=s+1

∆>
s,extx>

t ∆s,e ≤ λ

2

(
3

∣∣∆s,e(Ss,e)
∣∣
1 −

∣∣∆s,e(S c
s,e)

∣∣
1

)
,

such that

∣∣∆s,e(S c
s,e)

∣∣
1 ≤ 3

∣∣∆s,e(Ss,e)
∣∣
1 . (A.1.2)

This in particular leads to

∣∣∆s,e
∣∣
1 ≤ 4

∣∣∆s,e(Ss,e)
∣∣
1 ≤ 4

p
2s

∣∣∆s,e
∣∣
2

from the definition of s. Then on R(1), we have

6
p

2sλ
∣∣∆s,e

∣∣
2 ≥

1p
e− s

e∑
t=s+1

∆>
s,extx>

t ∆s,e

≥ωpe− s
∣∣∆s,e

∣∣2
2 −

32CRSCs log(p)(e− s)τp
e− s

∣∣∆s,e
∣∣2
2 ≥

ω

2
p

e− s
∣∣∆s,e

∣∣2
2 ,

where the last inequality follows for (e− s)1−τ ≥ 64CRSCω
−1s log(p). In summary,

∣∣∆s,e
∣∣
2 ≤

12
p

2sλ
ω
p

e− s
. (A.1.3)

Combining (A.1.2) and (A.1.3), the proof is complete. ■
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A.1.1.2 Proof of Theorem 3.1 (i)

Let T j = {θ j −bηGc+1, . . . ,θ j +bηGc}∩T for 1≤ j ≤ q. Under Assumptions 3.4 and 3.5, we have

G ≥ C−2
δ

C1 max{ω−2sρ2
n,p, (ω−1s log(p))1/(1−τ)} such that the lower bound on (e− s) made in B (see

Lemma A.1.2) is met by all s = k and e = k+G, k = 0, . . . ,n−G. By Lemma A.1.2,

max
G≤k≤n−G

∣∣Tk(G)−T∗
k (G)

∣∣≤
max

G≤k≤n−G

√
G
2

(∣∣∣β̂k−G,k −β∗
k−G,k

∣∣∣
2
+

∣∣∣β̂k,k+G −β∗
k,k+G

∣∣∣
2

)
≤ 24

p
sλ

ω
. (A.1.4)

First, consider some k for which {k−G +2, . . . ,k+G −1}∩Θ = ;. Then, we have T∗
k (G) = 0

from Lemma A.1.1 such that by (A.1.4),

max
k:min1≤ j≤q |k−θ j |≥G

Tk(G)≤ max
G≤`≤n−G

∣∣T`(G)−T∗
` (G)

∣∣≤ 24
p
sλ

ω
≤ D. (A.1.5)

This ensures that any θ̃ ∈ Θ̃ satisfies min1≤ j≤q |θ̃−θ j| <G. Next, let θL
j and θR

j denote two points

within T j which are the closest to θ j from the left and and the right of θ j, respectively, with

θL
j = θR

j when r = 1/G. Then by construction of T ,

max(θ j −θL
j ,θR

j −θ j)≤ brGc and min(θ j −θL
j ,θR

j −θ j)≤ brGc
2

, (A.1.6)

such that from Lemma A.1.1,

max
(
T∗
θL

j
(G),T∗

θR
j
(G)

)
≥ δ j(G−brGc/2)p

2G
≥

√
G
2
δ j(1− r/2).

From this and by (A.1.4), at θ̃ j = argmaxk∈T j Tk(G), we have

Tθ̃ j
(G)≥max

(
T
θL

j
(G),T

θR
j
(G)

)
≥

√
G
2
δ j

(
1− r

2

)
− 24

p
sλ

ω
> 1− r/2

2

√
G
2
δ j > D,

where the second last inequality follows from Assumption 3.5 (b), and the last one from (3.12).

When η= 1, this and (A.1.5) indicates that such θ̃ j satisfies (3.7). When η< 1, note that

max
(
T
θL

j
(G),T

θR
j
(G)

)
−max

{
Tk(G) : |k−θ j| > (1−η)G, k ∈T

}
≥

√
G
2
δ j

(
η− 3r

2

)
− 48

p
sλ

ω
≥ 5η

8
p

2
min

1≤ j≤q
δ j

p
G − 48

p
sλ

ω
> 0

from (3.12). These arguments ensure that we detect at least one change point in T j at t = θ̃ j for

each j = 1, . . . , q. For such θ̃ j, suppose that θ◦j = argmink∈{θL
j ,θR

j }|θ̃ j −k|. Then,

δ jp
2G

(G−|θ̃ j −θ j|)+ 24
p
sλ

ω
≥ Tθ̃ j

(G)≥ Tθ◦j (G)≥ δ jp
2G

(G−|θ◦j −θ j|)− 24
p
sλ

ω
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and re-arranging, we obtain

δ jp
2G

(
|θ̃ j −θ j|− |θ◦j −θ j|

)
≤ 48

p
sλ

ω
, such that |θ̃ j −θ j| ≤ 48

p
2sG λ

ωδ j
+brGc <

⌊
G
2

⌋
,

for large enough C1 in Assumption 3.5 (b).

Finally, let LT (t) denote the largest time point k′ ∈T that satisfies k′ ≤ t, and define RT (t)

analogously. Then, we establish that

T
LT (θ j− ηG

2 m)(G)>max
{

Tk(G) :
ηG
2

(m+1)≤ θ j −k ≤ ηG
2

(m+2), k ∈T

}
, (A.1.7)

T
RT (θ j+ ηG

2 m)(G)>max
{

Tk(G) :
ηG
2

(m+1)≤ k−θ j ≤ ηG
2

(m+2), k ∈T

}
, (A.1.8)

for m = 0, . . . ,d2/ηe−2. The inequality in (A.1.7) follows from noting that

T
LT (θ j− ηG

2 m)(G)−max
{

Tk(G) :
ηG
2

(m+1)≤ θ j −k ≤ ηG
2

(m+2), k ∈T

}

≥
√

G
2
δ j

(η
2
− r

)
− 48

p
sλ

ω
≥ η

4
p

2
min

1≤ j≤q
δ j

p
G − 48

p
sλ

ω
> 0

under (3.12), and the inequality in (A.1.8) follows analogously. This ensures that θ̃ j by its

construction is the unique local maximiser of Tk(G) within the interval {θ j −G+1, . . . ,θ j +G}∩T

satisfying (3.7) for each j = 1, . . . , q, which completes the proof.

A.1.1.3 Proof of Theorem 3.1 (ii)

Recalling (3.8), we write

Q j(k)=
k∑

t=θ̃ j−G+1

(Yt −x>
t β̂

L
j )

2 +
θ̃ j+G∑
t=k+1

(Yt −x>
t β̂

R
j )2.

Theorem 3.1 (i) establishes that for each j = 1, . . . , q, we have θ̃ j ∈ Θ̃ that satisfies |θ̃ j −θ j| <G/2,

and Θ̃ contains no other estimator. Then under Assumption 3.5 (a), we have the following

statements satisfied for all j.

(i) Defining I (θ̃ j)= {θ̃ j −G+1, . . . , θ̃ j +G}, it fulfils I (θ̃ j)∩Θ= {θ j}.

(ii) {θ̃L
j −G + 1, . . . , θ̃L

j } ⊂ {θ j−1 + 1, . . . ,θ j} and {θ̃R
j + 1, . . . , θ̃R

j +G} ⊂ {θ j + 1, . . . ,θ j+1}, such that

denoting by ∆L
j = β̂

L
j −β j−1 and ∆R

j = β̂
R
j −β j, we have

max
(∣∣∣∆L

j

∣∣∣
2

,
∣∣∣∆R

j

∣∣∣
2

)
≤ 12

p
2sλ

ω
p

G
,∣∣∣∆L

j (S
c
j−1)

∣∣∣
1
≤ 3

∣∣∣∆L
j (S j−1)

∣∣∣
1

and
∣∣∣∆R

j (S c
j )

∣∣∣
1
≤ 3

∣∣∣∆R
j (S j)

∣∣∣
1

(A.1.9)

in B, see Lemma A.1.2.

152



A.1. PROOFS

Then we show that for all k ∈I (θ̃ j) satisfying δ2
j |k−θ j| > vn,p with

vn,p =max
(
sρ2

n,p, (s log(p))
1

1−τ
)
·max

{
C2
δmax

[
9CRSC

2ω
,
32CRSC

ω̄

] 1
1−τ

,
(

96CDEV

ω

)2
}

, (A.1.10)

we have Q j(k)−Q j(θ j)> 0, which completes the proof.

First, suppose that k ≥ θ j +1. Then,

Q j(k)−Q j(θ j)=
k∑

t=θ j+1

[
(Yt −x>

t β̂
L
j )

2 − (Yt −x>
t β̂

R
j )2

]
=

k∑
t=θ j+1

(β j − β̂
L
j )
>xtx>

t (β j − β̂
L
j )−

k∑
t=θ j+1

(β̂R
j −β j)

>xtx>
t (β̂R

j −β j)

+2
k∑

t=θ j+1
εtx>

t

[
(β j −β j−1)+ (β̂R

j −β j)− (β̂L
j −β j−1)

]
= I1 + I2 + I3.

From the definition of s and the Cauchy-Schwarz inequality,

|β j −β j−1|1 ≤
p

2s |β j −β j−1|2 (A.1.11)

and from (A.1.9), we have

|∆L
j |1 ≤ 4|∆L

j (S j)|1 ≤ 4
p

2s |∆L
j |2 and analogously, |∆R

j |1 ≤ 4
p

2s |∆R
j |2. (A.1.12)

From (A.1.11)–(A.1.12), we derive∣∣∣β̂L
j −β j

∣∣∣
2
≤ δ j

(
1+ 12

p
2sλ

ωδ j
p

G

)
≤ 3δ j

2
and similarly,

∣∣∣β̂L
j −β j

∣∣∣
2
≥ δ j

2
,

∣∣∣β̂L
j −β j

∣∣∣
1
≤p

sδ j

(
1+ 96

p
sλ

ωδ j
p

G

)
≤ 3

p
sδ j

2
,

for a large enough C1 in Assumption 3.5 (b). Then on R(1), we have

I1 ≥ |k−θ j|ωδ2
j

(
1
4
− 9CRSCs log(p)

4|k−θ j|1−τω
)
≥ ω

8
δ2

j |k−θ j| (A.1.13)

from that |k − θ j| > δ−2
j vn,p ≥ C−2

δ
vn,p (from Assumption 3.4) and (A.1.10). As for I2, from

Lemma A.1.2, (A.1.10) and (A.1.12) we have on R(2),

|I2| ≤
∣∣∣∆R

j

∣∣∣2
2

[|k−θ j|ω̄+32CRSCs log(p)|k−θ j|τ
]≤ 2|k−θ j|ω̄

∣∣∣∆R
j

∣∣∣2
2
≤ 576ω̄s|k−θ j|λ2

ω2G
. (A.1.14)

Turning our attention to I3, from (A.1.11)–(A.1.12),∣∣∣(β j −β j−1)+ (β̂R
j −β j)− (β̂L

j −β j−1)
∣∣∣
1
≤

∣∣∣β j −β j−1

∣∣∣
1
+

∣∣∣β̂R
j −β j

∣∣∣
1
+

∣∣∣β̂L
j −β j−1

∣∣∣
1

≤p
sδ j

(
1+ 192

p
sλ

ωδ j
p

G

)
≤ 2

p
sδ j,
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where the last inequality follows from Assumption 3.5 (b). Then on D(1),

1
2
|I3| ≤

∣∣∣∣∣ k∑
t=θ j+1

εtx>
t

∣∣∣∣∣
∞

∣∣∣(β j −β j−1)+ (β̂R
j −β j)− (β̂L

j −β j−1)
∣∣∣
1

≤ 2CDEVδ j

√
s(k−θ j)ρn,p. (A.1.15)

Then from (A.1.13), (A.1.14) and (A.1.15), we derive

|I2|
I1

= 4608ω̄sλ2

ω3δ2
jG

≤ 1
3

and
|I3|
I1

= 32CDEV
p
sρn,p

ωδ j
√

k−θ j
≤ 1

3

under Assumption 3.5 (b), for all k ∈ I j satisfying δ2
j |k− θ j| > vn,p from (A.1.10). Analogous

arguments apply when k ≤ θ j, and the above arguments are deterministic on M . In summary, we

have

min
1≤ j≤q

min
k∈I j

δ2
j |k−θ j |>vn,p

(
Q j(k)−Q j(θ j)

)> ω

24
vn,p > 0,

which concludes the proof.

A.1.2 Proof of Proposition 3.2

A.1.2.1 Supporting lemmas

Define K(b) = B0(b)∩B2(1) with some b ≥ 1, where Bd(r) = {a : |a|d ≤ r} with the dimension

of a determined within the context. Let ei denote a vector that contains zeros except for its

ith component set to be one. We denote the time-varying vector of parameters under (3.1) by

β(t)=∑q+1
j=1 β jI{θ j−1+1≤t≤θ j}.

Denote by Zt = (x>
t ,εt)> ∈ Rp+1 which admits Zt =∑∞

`=0 D`ξt−` under (3.13). For some a,b ∈
B2(1), define Ut(a)= a>Zt and Wt(a,b)= a>ZtZ>

t b. Let ξ′t denote an independent copy of ξt, and

define Zt,{0} = ∑∞
`=0,` 6=t D`ξt−`+Dtξ

′
0. We denote the functional dependence measure and the

dependence-adjusted norm for Ut(a) as defined in Zhang and Wu (2017), by

δt,ν(a)= ∥∥a>Zt −a>Zt,{0}
∥∥
ν and |||U·(a)|||ν =

∞∑
t=0

δt,ν(a),

respectively. Analogously, we define

δt,ν(a,b)=
∥∥∥a>ZtZ>

t b−a>Zt,{0}Z>
t,{0}b

∥∥∥
ν

and |||W·(a,b)|||ν =
∞∑

t=0
δt,ν(a,b)

for Wt(a,b). Finally, for some κ≥ 0, we denote the dependence adjusted sub-exponential norm

of Wt(a,b) by ‖W·(a,b)‖ψκ
= supν≥2ν

−κ|||W·(a,b)|||ν. In what follows, we denote by CΠ with Π ⊂
{γ,ν,Ξ,ς} a constant that depends on the parameters included in Π which may vary from one

occasion to another.
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Lemma A.1.3. Suppose that Condition 1 holds.

(i) Under Condition 1 (a), we have supa,b∈B2(1) ‖W·(a,b)‖ψκ
≤ Cγ,Ξ,ςC2

ξ
<∞ with κ= 2γ+1.

(ii) Under Condition 1 (b), we have supa∈B2(1) |||U·(a)|||2 ≤ CΞ,ς.

Proof. In what follows, we denote by µν = ‖ξit‖ν. For given ν> 1, we have

sup
a∈B2(1)

δt,ν(a)= ∥∥a>Dt(ξ0 −ξ′0)
∥∥
ν ≤ Cνµν

√
2 sup

a∈B2(1)

∣∣a>Dt
∣∣2
2 ≤ CνµνΞ(1+ t)−ς (A.1.16)

with Cν =max(1/(ν−1),
p
ν−1 ), where the first inequality follows from Lemma 2 of Chen et al.

(2021) (Burkholder’s inequality) and Minkowski’s inequality, and the second inequality from

Condition 1 and from that ‖Dt‖2 ≤
√‖Dt‖1‖Dt‖∞ (with ‖·‖a denoting the induced matrix norms).

Therefore, under Condition 1 (b),

sup
a∈B2(1)

|||U·(a)|||2 ≤Ξ
∞∑

t=0
(1+ t)−ς ≤ CΞ,ς,

which proves (ii). Note that by Hölder and Minkowski’s inequalities,

δt,ν(a,b)≤
∥∥∥∥∥ ∞∑
`=0

a>D`ξt−`

∥∥∥∥∥
2ν

∥∥b>Dt(ξ0 −ξ′0)
∥∥

2ν

+
∥∥∥∥∥ ∞∑
`=0,` 6=t

b>D`ξt−`+b>Dtξ
′
0

∥∥∥∥∥
2ν

∥∥a>Dt(ξ0 −ξ′0)
∥∥

2ν .

For given ν> 2, similarly as in (A.1.16), we can show that

sup
a∈B2(1)

∥∥∥∥∥ ∞∑
`=0

a>D`ξt−`

∥∥∥∥∥
2ν

≤
∞∑
`=0

sup
a∈B2(1)

∥∥a>D`ξt−`
∥∥

2ν

≤ C2νµ2ν

∞∑
`=0

√
sup

a∈B2(1)

∣∣a>D`

∣∣2
2 ≤ C2νµ2ν

∞∑
`=0

Ξ(1+`)−ς ≤ Cγ,Ξ,ςCξν
γ+1/2 (A.1.17)

under Condition 1 (a). Then, (A.1.16)–(A.1.17) lead to

sup
a,b∈B2(1)

δt,ν(a,b)≤ Cγ,Ξ,ςC2
ξν

2γ+1(1+ t)−ς, and

sup
a,b∈B2(1)

|||W·(a,b)|||ν ≤ Cγ,Ξ,ςC2
ξν

2γ+1
∞∑

t=0
(1+ t)−ς ≤ Cγ,Ξ,ςC2

ξν
2γ+1,

such that we have supa,b∈B2(1) ‖W·(a,b)‖ψκ
≤ Cγ,Ξ,ςC2

ξ
with κ= 2γ+1, which proves (i). ■

Lemma A.1.4. Under Condition 1 (a), there exist fixed constants C′,C′′ > 0 such that for all

0≤ s < e ≤ n and z > 0, we have

sup
a,b∈B2(1)

P

(
1p

e− s

∣∣∣∣∣ e∑
t=s+1

a>ZtZ>
t b− IE

(
e∑

t=s+1
a>ZtZ>

t b

)∣∣∣∣∣≥ z

)
≤ C′ exp

(
−C′′z

2
4γ+3

)
.
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Proof. By Lemma A.1.3 (i) and Lemma C.4 of Zhang and Wu (2017), there exist constants

C′,C′′ > 0 that depend on γ,Ξ,ς and Cξ, such that for all z > 0,

sup
a,b∈B2(1)

P

(
1p

e− s

∣∣∣∣∣ e∑
t=s+1

a>ZtZ>
t b− IE

(
e∑

t=s+1
a>ZtZ>

t b

)∣∣∣∣∣≥ z

)

≤ C′ exp

− (4γ+3)z
2

4γ+3

4e(Cγ,Ξ,ςC2
ξ
)

2
4γ+3

≤ C′ exp
(
−C′′z

2
4γ+3

)
.

■

Lemma A.1.5. Under Condition 1 (b), there exists a fixed constants C′′′ > 0 such that for all

0≤ s < e ≤ n and 0< z < C2
Ξ,ς

p
e− s , we have

sup
a,b∈B2(1)

P

(
1p

e− s

∣∣∣∣∣ e∑
t=s+1

a>ZtZ>
t b− IE

(
e∑

t=s+1
a>ZtZ>

t b

)∣∣∣∣∣≥ z

)
≤ 6exp(−C′′′z2).

Proof. By Lemma A.1.3 (ii) and Theorem 6.6 of Zhang and Wu (2021), there exists an absolute

constant C > 0 such that for all 0< z < C2
Ξ,ς

p
e− s ,

sup
a∈B2(1)

P

(
1p

e− s

∣∣∣∣∣ e∑
t=s+1

a>ZtZ>
t a− IE

(
e∑

t=s+1
a>ZtZ>

t a

)∣∣∣∣∣≥ z

)

≤ 2exp

[
−C min

(
z2

C4
Ξ,ς

,
z
p

e− s
C2
Ξ,ς

)]
≤ 2exp(−CC−4

Ξ,ςz2).

Then noting that

sup
a,b∈B2(1)

P

(
2p

e− s

∣∣∣∣∣ e∑
t=s+1

a>ZtZ>
t b− IE

(
e∑

t=s+1
a>ZtZ>

t b

)∣∣∣∣∣≥ z

)
≤

sup
a,b∈B2(1)

P

(
1p

e− s

∣∣∣∣∣ e∑
t=s+1

(a+b)>ZtZ>
t (a+b)− IE

(
e∑

t=s+1
(a+b)>ZtZ>

t (a+b)

)∣∣∣∣∣≥ z
3

)

+2 sup
a∈B2(1)

P

(
1p

e− s

∣∣∣∣∣ e∑
t=s+1

a>ZtZ>
t a− IE

(
e∑

t=s+1
a>ZtZ>

t a

)∣∣∣∣∣≥ z
3

)
≤ 6exp

(
− Cz2

9C4
Ξ,ς

)
,

we can find C′′′ that depends on Ξ and ς. ■

A.1.2.2 Proof of Proposition 3.2 (i)

Recalling C′ from Lemma A.1.4, we set c1 = 3C′.
Verification of Assumption 3.2:

By assumption, we have IE(xtεt) = 0. Then setting a = ei, i = 1, . . . , p, b = ep+1 and z =
CDEV log2γ+3/2(p∨n) in Lemma A.1.4,

P(D(1))≥ 1−C′pn2 exp
(
−C′′C

2
4γ+3
DEV log(p∨n)

)
. (A.1.18)
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Next, by construction,

e∑
t=s+1

(β(t)−β∗
s,e)= 0 and max

0≤s<e≤n
|{s+1,...,e}∩Θ|≤1

max
s<t≤e

∣∣β(t)−β∗
s,e

∣∣
2 ≤ Cδ (A.1.19)

under Assumption 3.4, and

IE

[
e∑

t=s+1
xtx>

t (β(t)−β∗
s,e)

]
=Σx

e∑
t=s+1

(β(t)−β∗
s,e)= 0 (A.1.20)

under Assumption 3.1. Then setting a = ei, i = 1, . . . , p, b = β(t)−β∗
s,e for given s, e and t ∈

{s+1, . . . , e} and z = CDEVCδ log2γ+3/2(p∨n) in Lemma A.1.4,

P(D(2))≥ 1−C′pn3 exp
(
−C′′(CDEVCδ)

2
4γ+3 log(p∨n)

)
, (A.1.21)

from (A.1.19) and (A.1.20). Combining (A.1.18) and (A.1.21), we can find large enough CDEV that

depends only on C′′, γ, Cδ and c2 such that P(D(1) ∩D(2))≥ 1−2c1(p∨n)−c2 /3.

Verification of Assumption 3.3:

Let bs,e denote an integer that depends on (e− s) for some 0≤ s < e ≤ n, and define

R =
{

sup
a∈K(2bs,e)

1
e− s

∣∣∣∣∣ e∑
t=s+1

a> (
xtx>

t −Σx
)
a

∣∣∣∣∣≥ Λmin(Σx)
54

for all 0≤ s < e ≤ n

with e− s ≥ C0 log4γ+3(p∨n)
}
.

By Lemma A.1.4 and Lemma F.2 of Basu and Michailidis (2015), we have

P
(
Rc)≤ ∑

0≤s<e≤n
e−s≥C0 log4γ+3(p∨n)

C′ exp

[
−C′′

(p
e− sΛmin(Σx)

54

) 2
4γ+3

+2bs,e log(p)

]

≤ C′n2 exp

−C′′

2

(
C1/2

0 Λmin(Σx)
54

) 2
4γ+3

log(p∨n)

 ,

where the last inequality follows with

bs,e =
⌊

C′′

4log(p)

(p
e− sΛmin(Σx)

54

) 2
4γ+3

⌋
,

which satisfies bs,e ≥ 1 for large enough C0. Further, we can find C0 that depends only on C′′,
Λmin(Σx), γ and c2 which leads to P(R) ≥ 1− c1(p∨ n)−c2 /3. Then, by Lemma 12 of Loh and

Wainwright (2012), on R, we have

e∑
t=s+1

a>xtx>
t a≥Λmin(Σx)(e− s)|a|22

− Λmin(Σx)
2

(e− s)

(
|a|22 +

4log(p)
C′′

(
54p

e− sΛmin(Σx)

) 2
4γ+3 |a|21

)
≥ω(e− s)|a|22 −CRSC log(p)(e− s)

4γ+2
4γ+3 |a|21
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for all a ∈Rp, with ω=Λmin(Σx)/2 and CRSC depending only on C′′, γ and Λmin(Σx). Analogously

we have on R,

e∑
t=s+1

a>xtx>
t a≤ ω̄(e− s)|a|22 +CRSC log(p)(e− s)

4γ+2
4γ+3 |a|21

for all a ∈Rp, with ω̄= 3Λmax(Σx)/2.

Combining the arguments above, we have P(D(1) ∩D(2) ∩R(1) ∩R(2))≥ 1− c1(p∨n)−c2 , with

τ= (4γ+2)/(4γ+3) and ρn,p = log2γ+3/2(p∨n).

A.1.2.3 Proof of Proposition 3.2 (ii)

We set c1 = 18.

Verification of Assumption 3.2:

By assumption, we have IE(xtεt) = 0. Then setting a = ei, i = 1, . . . , p, b = ep+1 and z =
CDEV

√
log(p∨n) in Lemma A.1.5,

P(D(1))≥ 1−6pn2 exp
(−C′′′C2

DEV log(p∨n)
)
, (A.1.22)

provided that C0 > C−4
Ξ,ςC

2
DEV. Also, setting a = ei, i = 1, . . . , p, b = β(t)−β∗

s,e for given s, e and

t ∈ {s+1, . . . , e} and z = CDEVCδ

√
log(p∨n) in Lemma A.1.5,

P(D(2))≥ 1−6pn3 exp
(−C′′′C2

DEVC2
δ log(p∨n)

)
, (A.1.23)

from (A.1.19) and (A.1.20). Combining (A.1.22) and (A.1.23), we can find large enough CDEV that

depends only on C′′′, Cδ and c2 such that P(D(1) ∩D(2))≥ 1−2c1(p∨n)−c2 /3.

Verification of Assumption 3.3:

Let bs,e denote an integer that depends on (e− s) for some 0≤ s < e ≤ n, and define

R =
{

sup
a∈K(2bs,e)

1
e− s

∣∣∣∣∣ e∑
t=s+1

a> (
xtx>

t −Σx
)
a

∣∣∣∣∣≥ Λmin(Σx)
54

for all 0≤ s < e ≤ n

with e− s ≥ C0 log(p∨n)} .

Then by Lemma A.1.5 and Lemma F.2 of Basu and Michailidis (2015), we have

P
(
Rc)≤ ∑

0≤s<e≤n
e−s≥C0 log(p∨n)

6exp
[
−C′′′(e− s)

(
Λmin(Σx)

54

)2
+2bs,e log(p)

]

≤ 6n2 exp
[
−C′′′C0

2

(
Λmin(Σx)

54

)2
log(p∨n)

]
,

where the last inequality follows with

bs,e =
⌊

C′′′(e− s)
4log(p)

(
Λmin(Σx)

54

)2⌋
,
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which satisfies bs,e ≥ 1 for large enough C0. Further, we can find C0 that depends only on

C′′′, Λmin(Σx) and c2 which leads to P(R) ≥ 1− c1(p∨n)−c2 /3. Then, by Lemma 12 of Loh and

Wainwright (2012), on R, we have

e∑
t=s+1

a>xtx>
t a≥Λmin(Σx)(e− s)|a|22

−Λmin(Σx)
2

(e− s)
(
|a|22 +

4log(p)
C′′′(e− s)

(
54

Λmin(Σx)

)2
|a|21

)
≥ω(e− s)|a|22 −CRSC log(p)|a|21

for all a ∈Rp, with ω=Λmin(Σx)/2 and CRSC depending only on C′′′ and Λmin(Σx). Analogously we

have on R,

e∑
t=s+1

a>xtx>
t a≤ ω̄(e− s)|a|22 +CRSC log(p)|a|21

for all a ∈Rp, with ω̄= 3Λmax(Σx)/2.

Combining the arguments above, we have P(D(1) ∩D(2) ∩R(1) ∩R(2))≥ 1− c1(p∨n)−c2 , with

τ= 0 and ρn,p =√
log(p∨n) .

A.1.3 Proof of Theorem 3.4

In what follows, we operate on M =D(1)∩D(2)∩R(1)∩R(2)∩B. Under Assumption 3.5′, we have

all G ∈G satisfy G ≥ C0 max{ρ2
n,p, (ω−1s log(p))1/(1−τ)} such that the lower bound on (e− s) made

in B (see Lemma A.1.2) is met by all s = k and e = k+G, k = 0, . . . ,n−G.

For some k and G ∈ G , we write I (k,G) = {k−G + 1, . . . ,k+G}. Recall that for each pre-

estimator θ̃ ∈ Θ̃(G), we denote by I (θ̃)=I (θ̃,G) its detection interval. By the same arguments

adopted in (A.1.4) and Lemmas A.1.1 and A.1.2, we have

max
G∈G

max
G≤k≤n−G

|I (k,G)∩Θ|≤1

∣∣Tk(G)−T∗
k (G)

∣∣≤ 24
p
sλ

ω
and T∗

k (G)= 0 if I (k,G)∩Θ=;. (A.1.24)

Then, we make the following observations.

(i) From (A.1.24) and the requirement on D in (3.19), we have I (θ̃)∩Θ 6= ; for all θ̃ ∈ Θ̃(G ), i.e.

each pre-estimator in Θ̃(G ) has (at least) one change point in its detection interval.

(ii) Under Assumption 3.5′, for each θ j, j = 1, . . . , q, there exists one pre-estimator θ̃ ∈ Θ̃(G( j))

such that I (θ̃)∩Θ = {θ j} and |θ̃− θ j| < bG( j)/2c, by the arguments used in the proof of

Theorem 3.1 (i).

Thanks to (ii), there exists an anchor estimator θ̃A ∈ Θ̃A for each θ j, in the sense that

θ j ∈I (θ̃A) and further, this anchor estimator θ̃A is detected with some bandwidth G ≤G( j). At the

same time, there is at most a single anchor estimator θ̃A fulfilling θ j ∈I (θ̃A) by its construction
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in (3.15), and (i) ensures that all anchor estimators contain one change point in its detection

interval. Therefore, we have q̂ = |Θ̃A| = q and we may write Θ̃A = {θ̃A
j , 1≤ j ≤ q : θ̃A

1 < . . .< θ̃A
q }.

Next, by (ii), there exists some θ̃ ∈ Θ̃(G( j)) fulfilling (3.16) for each j = 1, . . . , q. To see this, note

that if θ̃ ∈ Θ̃(G( j)) detects θ j in the sense that θ j ∈I (θ̃),{
θ̃−G( j) −

⌊G( j)

2

⌋
+1, . . . , θ̃+G( j) +

⌊G( j)

2

⌋}
⊂ {

θ j −2G( j) +1,θ j +2G( j)
}
, while

I (θ̃A
j−1)⊂ {

θ j−1 −2G( j−1) +1, . . . ,θ j−1 +2G( j−1)
}

and

I (θ̃A
j+1)⊂ {

θ j+1 −2G( j+1) +1, . . . ,θ j+1 +2G( j+1)
}
,

and the sets on RHS do not overlap under Assumption 3.5′ (a). This in turn implies that we have

|C j| ≥ 1. Also for θ̃M
j ∈C j, we have that its detection bandwidth GM

j satisfies

3
2

GM
j ≤min(θ j+1 −θ j,θ j −θ j−1) and GM

j ≥G( j)

by the construction of C j. Also, the bandwidths generated as in Remark 3.2 satisfy

G`−1 + 1
2

G`−1 ≤G`−1 +G`−2 =G` ≤ 2G`−1, such that
1
2

G` ≤G`−1 ≤ 2
3

G` for `≥ 2,

and therefore

1
4

G( j) ≤G∗
j and G∗

j ≤
(

3
4
· 2
3
+ 1

4

)
GM

j ≤ 1
2

min(θ j+1 −θ j,θ j −θ j−1). (A.1.25)

Further, by that |θ̃m
j −θ j| <Gm

j (see (i)) and

2Gm
j +G∗

j =
11
4

Gm
j + 1

4
GM

j ≤ 11
4

G( j) +
1
4

GM
j ≤ 41

48
min(θ j+1 −θ j,θ j −θ j−1),

we have

{θ̃m
j −Gm

j −G∗
j +1, . . . , θ̃m

j −Gm
j }∩ {θ̃m

j +Gm
j +1, . . . , θ̃m

j +Gm
j +G∗

j }∩Θ=;. (A.1.26)

From (A.1.25) and Assumption 3.5′ (b), we have

δ2
jG

∗
j ≥ C1 max

{
ω−2sρ2

n,p,
(
ω−1s log(p)

)1/(1−τ)}
and from (A.1.26) and Lemma A.1.2, we have ∆L

j = β̂
L
j −β j−1 and ∆R

j = β̂
R
j −β j satisfy

max
(∣∣∣∆L

j

∣∣∣
2

,
∣∣∣∆R

j

∣∣∣
2

)
≤ 12

p
2sλ

ω
√

G∗
j

≤ 24
p

2sλ
ω

√
G( j)

,

∣∣∣∆L
j (S

c
j−1)

∣∣∣
1
≤ 3

∣∣∣∆L
j (S j−1)

∣∣∣
1

and
∣∣∣∆R

j (S c
j )

∣∣∣
1
≤ 3

∣∣∣∆R
j (S j)

∣∣∣
1

,

such that the arguments analogous to those employed in the proof of Theorem 3.1 (ii) are

applicable to establish the localisation rate of θ̌ j, which completes the proof.
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A.2 Further information on the real dataset

Table A.2.1 lists the covariates included in the dataset analysed in Section 6.6.2.

Table A.2.1: Covariates contained in the equity premium dataset analysed in Section 6.6.2 (cf. Koo et al.
(2020), Table 3)

Name Description

d/p Dividend price ratio: difference between the log of dividends and the log of prices
d/y Dividend yield: difference between the log of dividends and the log of lagged prices
e/p Earnings price ratio: difference between the log of earnings and the log of prices
d/e Dividend payout ratio: difference between the log of dividends and the log of earnings
b/m Book-to-market ratio: ratio of book value to market value for the Dow Jones Industrial Average
ntis Net equity expansion: ratio of 12-month moving sums of net issues by NYSE listed stocks over

the total end-of-year market capitalization of NYSE stocks
tbl Treasury bill rates: 3-month Treasury bill rates
lty Long-term yield: long-term government bond yield
tms Term spread: difference between the long term bond yield and the Treasury bill rate
dfy Default yield spread: difference between Moody’s BAA and AAA-rated corporate bond yields
dfr Default return spread: difference between the returns of long-term corporate and government bonds
svar Log of stock varianceobtained as the sum of squared daily returns on S&P500 index
infl Inflation: CPI inflation for all urban consumers
ltr Long-term return: return of long term government bonds
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AUTOREGRESSIVE TIME SERIES

B.1 MOSUM Wald procedure

Here we propose an alternative methodology using the Wald detector

Ŵ(G)= max
G≤k≤n−G

Ŵk(G), Ŵk(G)=
√

G
2

∥∥∥Γ̂−1/2
k

(
âk+1,k+G − âk−G+1,k

)∥∥∥ , (B.1.1)

which has the population counterpart

W(G)= max
G≤k≤n−G

Wk(G), Wk(G)=
√

G
2

∥∥∥Γ−1/2
k

(
âk+1,k+G − âk−G+1,k

)∥∥∥ .

The parameter vector âs,e solves (4.6). The matrix Γ̂k estimates

Γk =V−1
( j)Σ( j)V−>

( j) , for k j−1 +1≤ k ≤ k j, (B.1.2)

where Σ( j) = Σ( j)(a j) and V ( j) = IE(∇H(X ( j)
t ,X( j)

t−1,a j)) is the expectation of the gradient of the

estimating function. In contrast to the score detector in (4.3), the Wald detector in (B.1.1) compares

the difference in the least squares parameter estimates from each G window either side of a

candidate k. This is expensive relative to simply evaluating predictive scores from a single

inspection parameter, and requires a greater window size to ensure reasonable estimation, but all

changes are detectable in the sense of Remark 4.1 and this can achieve more accurate localisation

in practice.

As with the MOSUM score procedure, to locate changes we identify all pairs of indices
(
v j,w j

)
such that for some ε ∈ (0,1/2),

Ŵk(G)> D(G,α) for v j ≤ k ≤ w j, and

Ŵk(G)≤ D(G,α) for k = v j −1,w j +1,
(B.1.3)
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where w j −v j ≥ εG, and D(G,α) is as in (4.11). We take the number of these pairs as an estimator

for the number of changes:

q̂ = number of pairs
(
v j,w j

)
,

and for each j = 1, . . . , q̂, we use the local maximum between v j and w j, as a location estimator

for k j, i.e.

k̂ j = argmaxv j≤k≤w j
Ŵk(G).

In practice we recommend to use the η-criterion discussed in Appendix B.4.

B.1.1 Estimation of Γk

Next we propose an estimators for the MOSUM Wald procedure of the form Γ̂k = V̂−1
k Σ̂kV̂−>

k . For

V k =V ( j),k j−1 +1≤ k ≤ k j, we propose

V̂ k =BlockDiagonalp(Ĉk−G+1,k+G)=


Ĉk−G+1,k+G 0 . . . 0

0 Ĉk−G+1,k+G
...

. . .

0 . . . Ĉk−G+1,k+G

 . (B.1.4)

For Σk, we propose the estimator

Σ̂
(3)
k = Ŝk ⊗ Ĉk−G+1,k+G , (B.1.5)

where we use the estimator for S

Ŝ(W)
k = 1

2G

( k∑
t=k−G+1

ε̂t(âk−G+1,k)ε̂>t (âk−G+1,k)+
k+G∑

t=k+1
ε̂t(âk+1,k+G)ε̂>t (âk+1,k+G)

)
. (B.1.6)

This uses residuals from both halves of the Wald detector window, averaging a covariance estimate

on either side of the candidate k. By localising we prevent contamination between regimes, and as

with (4.8) we gain detection power by overestimating the covariance around true change points.

As with (4.9) we can use the estimating function to define an estimator, the only difference

here being that âs,e is used for the regression parameters. We define

Σ̂
(4)
k =

1
2G

[( k∑
t=k−G+1

(
H t(âk−G+1,k)− H̄k−G+1,k(âk−G+1,k)

)
(H(âk−G+1,k)− H̄k−G+1,k(âk−G+1,k)

)>+
k+G∑

t=k+1

(
H t(âk+1,k+G)− H̄k+1,k+G(âk+1,k+G)

)(
H t(âk+1,k+G)− H̄k+1,k+G(âk+1,k+G)

)>)]
.

(B.1.7)
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B.1.2 Extensions

B.1.2.1 Grid-based procedure

Over the grid (4.14) we define the grid-based Wald detector

ŴT (G)=max
k∈T

Ŵk(G), (B.1.8)

where Ŵk(G) is as defined in (B.1.1). After scanning over the grid, intervals with detectors

exceeding the threshold are filled in with score statistics, where the inspection parameter is

calculated over each contiguous significant interval. To locate changes, we can use either of the ε-

or η-criteria; our theoretical results are derived with the former but will hold with the latter by

the same arguments as Lemma B.28.

MOSUM Wald grid-based Procedure

1. Identify all k ∈T such that Ŵk(G)≥ D(G,α)

2. Collect these k into contiguous intervals such that k = si, si +1, . . . , e i, i = 1. . . ,Q and extend

these outwards to define the sets

Ti = {si −G, si −G+1, . . . , e i +G}.

3. Compute the estimator âTi as in (4.6) with s = si −G and e = e i +G.

4. For each i, calculate the statistic T̂k(G, âTi ) for each k in the set Ti. For each k, assign Tk

to be the pointwise maximum of T̂k(G, âTi ) over i.

5. Locate changes with the ε-criterion as in (4.5).

B.1.2.2 Multiscale method

We can use Ŵk in place of T̂k in Algorithm 8 to obtain a multiscale extension to the MOSUM

Wald procedure.

B.1.2.3 Threshold bootstrap

In the bootstrap procedure of Section 4.5.3, we can use the detector Ŵm(G) as per (B.1.1),

evaluated over the simulated dataset {X m
t }n

t=1 as in step 2. Taking a quantile of these maxima

over m = 1, . . . , M will give a threshold with better size control than D(G,α) as in (4.11).
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B.1.3 Theoretical properties

We provide theoretical results supporting the MOSUM Wald procedure. Analogously to Assump-

tion 4.7, Assumption B.1 requires estimators for Γk to be consistent away from changes, and the

spectral norm to be finite near to changes.

Assumption B.1. The estimator Γ̂k of the covariance matrix Γk is positive definite and satisfies

(a)

max
k j−1+G≤k≤k j−G

∥∥∥Γ̂−1/2
k −Γ−1/2

k

∥∥∥
F
= oP

(
log(n/G)−1)

for any j = 1, . . . , q+1.

(b) For any j = 1, . . . , q it holds that

max
k:|k−k j |<(1−ε)G

∥∥∥Γ̂1/2
k

∥∥∥
F
<∞, and max

k:|k−k j |<(1−ε)G

∥∥∥Γ̂−1/2
k

∥∥∥
F
<∞.

We show in Proposition B.1 that under the null hypothesis, a transformation of the Wald

statistic converges to a Gumbel distribution.

Proposition B.1. Let Assumptions 4.1–4.4 hold. Then, under H0,

(a)

a(n/G)W(G)−b(n/G) D→G2,

where G2, a(x), and b(x) are as in Proposition 4.1.

(b) The result of (a) holds with an estimator Γ̂k, with Σ̂k as in (B.1.5) or (B.1.7), in place of the

true Γk.

With the critical value cα, we identify the asymptotic distribution of the transformed statistics

under H0.

As a result of Proposition B.1, we have a testing procedure for W(G) with asymptotic level α,

where we reject H0 if W(G) exceeds D(G,α) as in (4.11).

Assumption 4.5′ translates Assumption 4.5 to the Wald setting, where the jump size does not

depend on an inspection parameter. When a j+1 6= a j, we necessarily have that δ j > 0.

Assumption 4.5′. For j = 1, . . . , q, define the jump size δ j = ‖d j‖, where

d j = IE
(
H(X ( j+1)

t ,X( j+1)
t−1 ,a j+1)

)− IE
(
H(X ( j)

t ,X( j)
t−1,a j)

)
.

As n →∞, we let min1≤ j≤qδ j ≥ cδ,n > 0, where cδ,n ·
√

G
log(n/G) →∞.

Theorem B.2 establishes that the MOSUM Wald procedure consistently estimates both the

number and locations of detectable changes.
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Theorem B.2 (MOSUM Wald procedure consistency). Let Assumptions 4.1-4.4, 4.5′, and 4.6

hold. Using the MOSUM Wald procedure, we have that

(a)

P

(
q̂ = q; max

1≤ j≤q
|k̂ j −k j| <G

)
→ 1

as n →∞.

(b) Letting wn →∞ and 0< wn <G ·min j=1,...,qδ
2
j , there exists some γ> 2 such that

P

(
max
1≤ j≤q

∣∣k̂ j −k j
∣∣δ2

j > wn

)
=O(w−γ/2

n )+ o(1).

(c) The results hold using an estimator Γ̂k, with Σ̂k as in (B.1.5) or (B.1.7), in place of the true

Γk.

Theorem B.3 supports the use of the grid-based procedure with the Wald detector.

Theorem B.3. The results of Theorem B.2 holds for the output {k̂ j : 1 ≤ j ≤ q̂} from the Wald

grid-based procedure.

B.2 Verifying conditions

Here we outline the conditions used in deriving asymptotic results in Reckrühm (2019) and

Kirch and Reckrühm (2022) for a more general process, and we show these hold for the piecewise

stationary VAR model.

In Assumption B.2 we specify a general invariance principle.

Assumption B.2 (Invariance principle). Let {Y t}t∈Z be a stochastic process where Y t ∈ Rm,

IE(Y 1)= 0 and Cov(Y 1)=Σ. The partial sum process S(k)=∑k
t=1 Y t satisfies a strong invariance

principle such that (possibly after changing the probability space) there exists a m-dimensional

standard Wiener process {W(k)}k≥0 with covariance Im and ν̃> 0 such that∥∥∥Σ−1/2 (S(k)− IE(S(k)))−W(k)
∥∥∥=O

(
k1/(2+ν̃)

)
a.s.

as k goes to infinity.

In Lemma B.4, we show that under the piecewise stationary VAR model, the generating

process satisfies the regularity conditions stated in Reckrühm (2019).

Lemma B.4. Let Assumptions 4.1–4.4 hold. The model (4.1) satisfies the following:

(a) For regimes j = 1, . . . , q+1, the components of
{
X

( j)
t (X( j)

t )>−C( j)

}n

t=1
satisfy a strong invari-

ance principle as in Assumption B.2.
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(b) For regimes j = 1, . . . , q+1,{(
(X( j)

t−1)>ε1t, (X
( j)
t−1)>ε2t, . . . , (X

( j)
t−1)>εpt

)>}n

t=1

satisfies a strong invariance principle as in Assumption B.2.

(c) For j = 1, . . . , q, The matrix δC( j) + (1−δ)C( j+1) is positive definite for all δ ∈ [0,1], and

supδ∈[0,1]

∥∥∥(
δC( j) + (1−δ)C( j+1)

)−1
∥∥∥

F
<∞.

Proof. The components of each sequence
{
X

( j)
t (X( j)

t )>−C( j) : t ≥ 1
}
, j = 1, . . . , q+1 have expectation

0 and and at least 4+ ν̃ finite moments by Assumption 4.1, so Assumption B.2 follows from

Theorem 4.1 of Kirch and Reckrühm (2022), and (a) is satisfied. Part (b) follows similarly. By

definition, C( j) is positive definite iff z>C( j)z > 0 for all conformable z. Also, C( j) is positive

definite for all j by Assumption 4.1. Hence it follows that z> (
δC( j) + (1−δ)C( j+1)

)
z > 0 for any

0≤ δ≤ 1, so (c) holds. ■

In Lemma B.5 we give the form of the expected Hessian of the estimating function.

Lemma B.5. The matrix V ( j)(ã)= IE
(
∇H(X ( j)

t ,X( j)
t−1, ã)

)
has the following form:

V ( j) (ã)=


C( j) O . . . O

O C( j)
...

...
. . .

O . . . C( j)

 . (B.2.1)

Hence, by Assumption 4.1,

V−1
( j) (ã)=


C−1

( j) O . . . O

O C−1
( j)

...
...

. . .

O . . . C−1
( j)

 . (B.2.2)

Proof. For i = 1, . . . , p, we have that

∇H
(
X ( j)

it ,X( j)
t−1, ã(i)

)
=
∂H

(
X ( j)

it ,X( j)
t−1, ã(i)

)
∂ã(i)

=X( j)
t−1(X( j)

t−1)>, (B.2.3)

implying that IE
(
∇H(X ( j)

it ,X( j)
t−1, ã(i))

)
= IE(X( j)

t−1(X( j)
t−1)>)=C( j). Moreover, for i 6= i′,

∂H
(
X ( j)

it ,X( j)
t−1, ã(i)

)
∂ã(i′)

=O.

Using the blockwise inverse of matrices and that each principal submatrix is positive definite, we

have (B.2.2). ■
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Lemma B.6 controls the moments of the series, the gradient, and the Hessian in each regime.

Lemma B.6. Let Assumptions 4.1–4.4 hold. There exists a ν > 0 such that the model (4.1)

satisfies the following for j = 1, . . . , q+1

(a) IE
(
supã∈Θ

∥∥∥H
(
X ( j)

t ,X( j)
t−1, ã

)∥∥∥2+ν)<∞.

(b) IE
(
supã∈Θ

∥∥∥∇H
(
X ( j)

t ,X( j)
t−1, ã

)∥∥∥2+ν
F

)
<∞.

(c) For i = 1, . . . , p, IE
(
supã∈Θ

∥∥∥∇2H
(
X ( j)

it ,X( j)
t−1, ã(i)

)∥∥∥2+ν
F

)
<∞.

Proof. (a) Noting that

−H(X ( j)
it ,X( j)

t−1, ã(i))=X( j)
t−1(X( j)

t−1)>(ã(i)−a j(i))+X( j)
t−1εit,

for i = 1, . . . , p we have that

IE(sup
ã∈Θ

‖H(X ( j)
it ,X( j)

t−1, ã(i)‖2+ν)

≤ IE(sup
ã∈Θ

‖X( j)
t−1(X( j)

t−1)>(ã(i)−a j(i))‖2+ν)+ IE(‖X( j)
t−1εit‖2+ν)

≤ IE(‖X( j)
t−1‖4+2ν sup

ã∈Θ
‖(ã(i)−a j(i))‖2+ν)+ IE(‖X( j)

t−1‖2+ν‖εit‖2+ν)<∞,

where the last inequality follows by the moment conditions in Assumptions 4.1 and 4.2 with

ν̃= 2ν, and the conditional independence of processes in Assumption 4.3. Each subvector of

H
(
X ( j)

t ,X( j)
t−1, ã

)
is thusly bounded, so the statement holds.

(b) Using (B.2.3), this holds by Assumption 4.1.

(c) ∇2H
(
X ( j)

it ,X( j)
t−1, ã(i)

)
=O for all ã ∈Θ, so this holds.

■

B.2.1 MOSUM score procedure

Here we verify conditions specific to the MOSUM score procedure. Recall as,e, the unique solution

of (4.12), and Ks,e in (4.13). Define s = bγsnc and e = bγenc for 0≤ γs < γe ≤ 1.

Lemma B.7 states that each series of estimating functions obeys a forwards inequality.

Lemma B.7. Define H0 (X t,Xt−1, ã)= H (X t,Xt−1, ã)− IE(H (X t,Xt−1, ã)). Let Assumptions 4.1–

4.4 hold.

(a) The following hold for any ξn →∞ and any j such that k j ∈Ks,e:
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(i) For m ∈ {k j−1 +G,k j −G,k j}, it holds

max
ξn≤k≤G

1
k

∥∥∥∥∥ m∑
t=m−k+1

H0

(
X ( j)

t ,X( j)
t−1,as,e

)∥∥∥∥∥= oP (1),

(ii) For m ∈ {k j−1,k j−1 +G,k j −G}, it holds

max
ξn≤k≤G

1
k

∥∥∥∥∥ m+k∑
t=m+1

H0

(
X ( j)

t ,X( j)
t−1,as,e

)∥∥∥∥∥= oP (1).

(b) The following backward law of large numbers holds for any ξn →∞ and any j such that

k j ∈Ks,e:

max
ξn≤k≤G

1
k

∥∥∥∥∥ G∑
t=G−k+1

H0

(
X ( j)

t ,X( j)
t−1,as,e

)∥∥∥∥∥= oP (1).

Proof. By Lemma B.6 and Kirch and Reckrühm (2022) Theorem 4.4, part (a) holds. Part (b)

holds by Lavielle and Moulines (2000), Theorem 1. ■

Lemma B.8 verifies that the estimating function evaluated on each stationary segment fulfils

an invariance principle.

Lemma B.8. Let Assumptions 4.1–4.4 hold. Let ã be a fixed inspection parameter. Each series

{H
(
X ( j)

t ,X( j)
t−1, ã

)
}n
t=1 for j such that k j ∈Ks,e satisfies Assumption B.2.

Proof. For each j = 1, . . . , q+1, define S( j,k, ã)=∑k
t=1 H

(
X ( j)

t ,X( j)
t−1, ã

)
. For i = 1, . . . , p, H(X t,Xt−1, ã)

consists of sub-vectors

−X( j)
t−1(X( j)

t−1)>(ã(i)−a j(i))−Xt−1εit.

The sequences
{
X

( j)
t−1(X( j)

t−1)> : t ≥ 1
}

and
{
X

( j)
t−1εit : t ≥ 1

}
, i = 1, . . . , p, j = 1, . . . , q+1, each satisfy

invariance by Lemma B.4, so the statement holds. ■

In Lemma B.9, we verify that the least squares estimator is
p

n−consistent for the best-

approximating global parameter, even when that Xt−1 may contain regressors from multi-

ple regimes. Hence by Lemma B.10, the divergence of the difference vector mk(G, âs,e) from

mk(G,as,e) must be bounded in probability.

Lemma B.9. Let Assumptions 4.1–4.4 hold. Then

p
n

(
âs,e −as,e

)=OP (1).

Proof. Lemma B.6 holds, so the result follows by Kirch and Reckrühm (2022) Theorem 4.3. ■
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Lemma B.10. Let Assumptions 4.1–4.4 hold. For any j such that k j ∈Ks,e, the estimator âs,e

fulfils

(i) max
k j−1+G≤k≤k j−G

1p
2G

‖mk(G, âs,e)−mk(G,as,e)‖ = oP

(
(log(n/G))−1/2

)
(ii) max

k:|k−k j |<G

1p
2G

‖mk(G, âs,e)−mk(G,as,e)‖ = oP

(
(log(n/G))1/2

)
.

Proof. By Assumption 4.2, the process X t is stable, with white noise errors. By Lemma B.9,

âs,e is
p

n -consistent for as,e. By Lemma B.6 and Kirch and Reckrühm (2022), Theorem 4.4, the

statement holds. ■

Lemma B.11 states that for as,e, at least one k j in the interval of interest causes a change in

the expectation of the estimating function.

Lemma B.11 (Lemma 3.3, Kirch and Reckrühm (2022)). For at least one j such that k j ∈Ks,e it

holds that

IE
(
H

(
X ( j)

t ,X( j)
t−1,as,e

))
6= IE

(
H

(
X ( j+1)

t ,X( j+1)
t−1 ,as,e

))
.

B.2.2 MOSUM Wald procedure

In Lemma B.12 we verify the conditions underlying the MOSUM Wald procedure.

Lemma B.12. Let Assumptions 4.1–4.3 hold. Then, the following hold:

(a) V ( j)(ã)= IE
(
∇H

(
X ( j)

t ,X( j)
t−1, ã

))>
, j = 1, . . . , q+1, is a regular matrix for all ã ∈Θ and

sup
ã∈Θ

∥∥∥V−1
( j) (ã)

∥∥∥
F
<∞.

(b) Let δV ( j)(ã)+ (1−δ)V ( j+1)(ã) be a regular matrix for all ã ∈Θ and all δ ∈ [0,1] and let

sup
δ∈[0,1]

sup
ã∈Θ

∥∥∥(
δV ( j)(ã)+ (1−δ)V ( j+1)(ã)

)−1
∥∥∥

F
<∞, j = 1, . . . , q.

Proof. Part (a) holds by the Cauchy-Schwartz inequality and that V−1
( j) (ã)V ( j)(ã) = I , for any

ã ∈Θ, we have that ∥∥V−1(ã)
∥∥

F ≤ ‖V (ã)‖−1
F <∞.

For part (b), for any ã ∈Θ and δ ∈ [0,1], by part (a) we have∥∥∥(
δV ( j)(ã)+ (1−δ)V ( j+1)(ã)

)−1
∥∥∥

F
≤ ∥∥(

δV ( j)(ã)+ (1−δ)V ( j+1)(ã)
)∥∥−1

F

≤max{
∥∥V ( j)(ã)

∥∥−1 ,
∥∥V ( j+1)(ã)

∥∥−1}

<∞.

■
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Lemma B.13 bounds the scaled estimation error in the MOSUM Wald procedure.

Lemma B.13. Denote by 1m = (1, . . . ,1)> ∈Rm. Let Assumptions 4.1–4.4 hold. For j = 1, . . . , q+1

it holds that

max
k j−1+1≤k≤k j−G

∥∥∥∥∥∥
√

G
2

(
âk+1,k+G −a j

)
C( j) ⊗1p(dp+1) −

1p
2G

k+G∑
t=k+1

H
(
X ( j)

t ,X( j)
t−1,a j

)∥∥∥∥∥∥
= oP

(
(log(n/G))−1/2

)
.

Proof. By the definition of âk+1,k+G in (4.6) we have

k+G∑
t=k+1

εitX
( j)
t−1 =

k+G∑
t=k+1

(âk+1,k+G(i)−a j(i))>X
( j)
t−1(X( j)

t−1)>,

hence

1p
2G

k+G∑
t=k+1

εitX
( j)
t−1 −

√
G
2

(âk+1,k+G(i)−a j(i))>C( j)

= 1
G

k+G∑
t=k+1

√
G
2

(âk+1,k+G(i)−a j(i))>(X( j)
t−1(X( j)

t−1)>−C( j)).

By Lemmas B.4, B.9, and B.15,

max
k j−1+1≤k≤k j−G

∥∥∥∥∥∥
√

G
2

(
âk+1,k+G −a j

)
C( j) −

1p
2G

k+G∑
t=k+1

εitX
( j)
t−1

∥∥∥∥∥∥
≤ max

k j−1+1≤k≤k j−G

√
G
2
‖âk+1,k+G(i)−a j(i)‖ max

k j−1+1≤k≤k j−G

1
G
‖

k+G∑
k+1

(Xt−1X
>
t−1 −C( j))‖F

=OP

(
log(n/G)p

G

)
= oP

(
(log(n/G))−1/2

)
.

The last step follows by Assumption 4.4 on the bandwidth G. This holds for i = 1, . . . , p so the

statement holds by the union bound. ■

B.3 Proofs and supporting results

B.3.1 MOSUM score procedure

Proposition 4.1

Proof. Lemmas B.7 and B.8 hold. The estimator â1,n obeys the bounds of Lemma B.10, while

Σ̂k(ã) as in (4.7) or (4.9) meets Assumption 4.7 (a) by Lemmas B.22 and B.24. The statement

then follows by Kirch and Reckrühm (2022), Theorem 2.1. ■
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Theorem 4.2

Proof. By Lemma B.8, the estimating function series obeys an invariance principle as in Assump-

tion B.2. When q ≥ 1, all changes are detectable by Assumption 4.5. The bandwidth meets As-

sumption 4.4. The estimator â1,n obeys the bounds of Lemma B.10, while Σ̂k(ã) as in (4.7) or (4.9)

meets Assumption 4.7 by Lemmas B.22 and B.24. Hence by Kirch and Reckrühm (2022) Theorem

3.5, part (a) holds.

For part (b), we want to show that for each k j, and each ε > 0, there exists wn ∈ (0,G ·
min j=1,...,qδ

2
j (ã)) such that wn →∞ and

P( max
1≤ j≤q

|k̂ j −k j|δ2
j (ã)> wn)≤ ε.

We condition on the event {q̂ = q}. By Assumption 4.5, following the proof of Kirch and Reckrühm

(2022) Theorem 3.6 we have that

P

(
k̂ j −k j < −wn

δ2
j (ã)

)
=O

(
w−γ/2

n

)
+ o(1),

and

P

(
k̂ j −k j > wn

δ2
j (ã)

)
=O

(
w−γ/2

n

)
+ o(1).

Hence, for each 1≤ j ≤ q,

P
(∣∣k̂ j −k j

∣∣δ2
j (ã)> wn

)
=O

(
w−γ/2

n

)
+ o(1),

so by the union bound over 1≤ j ≤ q, since q is fixed, we conclude

P

(
max
1≤ j≤q

∣∣k̂l −k j
∣∣δ2

j (ã)> wn

)
=O(qw−γ/2

n )+ o(1)=O(w−γ/2
n )+ o(1).

■

B.3.2 MOSUM Wald procedure

Proposition B.1

Proof. Lemmas B.7, B.8, and B.13 hold. The statement then follows by Kirch and Reckrühm

(2022), Theorem 2.1. ■

Theorem B.2

Proof. By Lemma B.8, the estimating function series obeys an invariance principle as in As-

sumption B.2. The bandwidth meets Assumption 4.4, and the estimator Γ̂k meets Assumption B.1

by Remark B.1 and Lemmas B.26 and B.27. The error bound in Lemma B.13 holds. We note

that Proposition 3.1 of Kirch and Reckrühm (2022) holds in our setting in consideration of the
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boundary effect between regimes. At t = k j +1, . . . ,k j +d the regressor Xt−1 can contain at most

d observations drawn from the previous regime, e.g. X ( j)
t−1. The estimator âk−G+1,k consistently

estimates
G−d

G
a j + d

G
a†

in the sense of Lemma B.16, where a† is some fixed parameter. Since d is fixed and G →∞ with

n, âk−G+1,k is consistent for a j. Hence by Theorem 3.2 of Kirch and Reckrühm (2022), part (a)

holds. Part (b) holds by the same arguments as the proof of Theorem 4.2. ■

B.3.3 Recursive segmentation

Theorem 4.3

Proof. By Theorem 4.2, with probability tending to 1, any change point k j meeting Assump-

tion 4.5 will have a corresponding estimator k̂ j such that |k̂ j − k j| < δ−2
j (a1,n) ·wn for some wn;

we denote this event R0. If all changes meet Assumption 4.5 with ã = a1,n, then we are done.

Otherwise, we set i ← 0, s̃old = 1, ẽold = n and argue recursively.

We condition on the event R i. Suppose the existence of k j, where j ∈ {1, . . . , q}, which was not

detected. By Lemma B.11, we at least have that δ j(as̃,ẽ) > 0, where s̃ is the largest element of

{k̂ j′ +1 : j′ ≤ j−1}, and ẽ is the smallest element of {k̂ j′′ : j′′ ≥ j+1}, with the conventions that

k̂0 = 0 and k̂q+1 = n. First, we suppose k j has a jump size such that δ j(as̃old ,ẽold )< cδ,n ≤ δ j(as̃,ẽ).

Letting s = k j′ +1 and e = k j′′ , we have (for j′, j′′ ∈ {1, . . . , q})

|s̃− s| ≤ δ−2
j′ (as̃old ,ẽold ) ·wn, and |ẽ− e| ≤ δ−2

j′′ (as̃old ,ẽold ) ·wn, (B.3.1)

due to R i. We apply the MOSUM score procedure to the resulting segmentation s̃, . . . , ẽ without

loss of generality. We have that min1≤ j≤q+1 k j−k j−1 > 2G > bc−2
δ,n ·wnc by Assumptions 4.4 and 4.8

(a), so

1≤ s+bc−2
δ,n ·wnc < k j < e−bc−2

δ,n ·wnc ≤ n,

and hence by (B.3.1)

1≤ s̃+bc−2
δ,n ·w′

nc < k j < ẽ−bc−2
δ,n ·w′

nc ≤ n,

where w′
n = 2wn, so k j must meet Assumption 4.8 (a) with s̃ and ẽ.

If s < s̃ and ẽ < e, then by Theorem 4.2, k j will be detected and estimated with error less

than c−2
δ,n ·wn. Otherwise, suppose that s̃ < s; the case for e < ẽ is analogous. Then for each

k ∈
[
s̃+G+1, s̃+G+bδ−2

j′ (as̃old ,ẽold ) ·w′
nc

]
, i.e. those in the interval such that the corresponding
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detector may draw from two regimes, we have that

‖IE mk(G,as̃,ẽ)‖ =
∥∥∥∥∥∥

k+G∑
t=k+1

IE H( j′)
t (as̃,ẽ)−

k j′∑
t=k−G+1

IE H( j′−1)
t (as̃,ẽ)−

k∑
t=k j′+1

IE H( j′)
t (as̃,ẽ)

∥∥∥∥∥∥
≤ (k j′ −k+G−1)‖IE H( j′)

t (as̃,ẽ)− IE H( j′−1)
t (as̃,ẽ)‖

≤ δ−2
j′ (as̃old ,ẽold ) ·w′

n ·δ2
j′(as̃,ẽ)

=O(1),

where the third line holds by Assumption 4.8 (b). Hence by Lemma B.8,

max
s̃+G+1≤k≤s̃+G+bδ−2

j′ (as̃old ,ẽold )·w′
nc

Tk(as̃,ẽ)=O(1)+ oP (
√

log(n/G) )= oP (D(G,α)),

so the detector will not exceed the threshold with high probability, and we will not re-detect

k j′ (likewise, k j′′). The estimator âs̃,ẽ is
p

n -consistent for as̃,ẽ by Lemma B.9, so the bounds of

Lemma B.10 hold, while Σ̂k(ã) as in (4.7) or (4.9) meets Assumption 4.7 by Lemmas B.22 and

B.24. Hence,

max
s̃+G+1≤k≤s̃+G+bδ−2

j′ (as̃old ,ẽold )·w′
nc

T̂k(âs̃,ẽ)= max
s̃+G+1≤k≤s̃+G+bδ−2

j′ (as̃old ,ẽold )·w′
nc

T̂k(as̃,ẽ)+ oP ((a(n/G))−1)

= oP (D(G,α)),

so the result holds. By Theorem 4.2, k j will be detected and estimated with error at most c−2
δ,n ·wn.

Define R i+1 =R i∩Bs̃,ẽ, where Bs̃,ẽ denotes the event that we detect, and estimate with error less

than c−2
δ,n ·wn, all change points meeting Assumption 4.8 with as̃,ẽ. We set i ← i+1, s̃old = s̃, ẽold = ẽ

and reiterate the argument until all change points are detected.

Next, we consider change points with small jump sizes, i.e. those in the set

Qs̃,ẽ = {k j : s̃ < k j < ẽ, and δ j(as̃,ẽ)< cδ,n}.

It remains to show that the procedure will not detect these, and so is consistent under Assumption

4.8. It holds for
∣∣k−k j

∣∣≤G with j ∈Qs̃,ẽ that ‖IE mk(G,as̃,ẽ)‖ < cδ,n, so

max|k−k j|≤G

1p
2G

‖IE mk(G,as̃,ẽ)‖ = o(D(G,α)) (B.3.2)

when cδ,n ·
√

G
log(n/G) →∞. By Assumption 4.4 it holds for such j ∈Qs̃,ẽ that

max
k j≤k<k j+G

Tk(G,as̃,ẽ)= 1p
2G

∥∥∥(Σk(ãs̃,ẽ))−1/2mk(G, ãs̃,ẽ)
∥∥∥

= o(D (G,α))+OP

(
max

k j≤k<k j+G

1p
G

∥∥W(k+G)−2W(k)+W
(
k j

)∥∥)
+OP

(
max

k j≤k<k j+G

1p
G

‖Σ−1/2
( j+1)Σ

1/2
( j) (W(k j)−W(k−G)))‖

)
= o(D (G,α))+OP (G−1/2k1/(2+ν̃))= oP (D (G,α)) ,
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where the second line follows by (B.3.2) and Lemma B.8 with Assumption B.2, and the last line

follows by the self-similarity of Wiener processes, the stationarity of its increments and the

continuous sample paths. A similar result holds for k j −G ≤ k < k j, and so

P

(
max
j∈Qs̃,ẽ

max|k−k j|<G
Tk(G,as̃,ẽ)≥ D (G,α)

)
→ 0.

Since q is fixed, the algorithm terminates in a finite number of steps, and R i for i ≤ q has

probability tending to 1.

The statement holds for data-driven inspection parameters, because by Lemma B.10 it holds

for j ∈Qs̃,ẽ

max|k−k j|<G
Tk

(
G, âs̃,ẽ

)= max|k−k j|<G
Tk(G,as̃,ẽ)+ oP (

√
log(n/G) )

= oP (D (G,α)) .

The estimators Σ̂k(ã) in (4.7) or (4.9) meets Assumption 4.7 by Lemmas B.22 and B.24, so the

result holds using these also. ■

B.3.4 Grid-based procedures

We give theoretical results for the grid-based procedures, giving the same asymptotic guarantees

as for the MOSUM score and Wald procedures. We define the grid-based detectors

T̂T (G)=max
k∈T

T̂k(G, ã), and ŴT (G)=max
k∈T

Ŵk(G). (B.3.3)

where T̂k(G, ã) is as defined in (4.3). Define the grid-based detectors

TT (G, ã)=max
k∈T

Tk(G, ã), and WT (G)=max
k∈T

Wk(G).

B.3.4.1 Null results

In Lemma B.14 we show that the grid-based procedure inherits size control under the null

hypothesis.

Lemma B.14. Let the conditions of Proposition 4.1 hold. The grid-based procedure using the

score detector (B.3.3) has asymptotic level at most α. Under the conditions of Proposition B.1, the

same holds for the Wald detector (B.1.8).

Proof. Since T ⊆ {G, . . . ,n−G}, we have TT (G, ã)≤ T(G, ã) and WT (G)≤W(G), so as n →∞,

P (a(n/G)TT (G, ã)−b(n/G)> cα)≤α

and

P (a(n/G)WT (G)−b(n/G)> cα)≤α.

The statement follows. ■
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B.3.4.2 Alternative results

First, we provide a useful result for bounding matrix norms.

Lemma B.15. Let A ∈Rp×p and x ∈Rp. Then, ‖Ax‖ ≤ ‖A‖F‖x‖.

Proof. On noting that Ax ∈ Rp, that the Frobenius norm and Euclidean norm coincide for a

real-valued vector, and the submultiplicativity of the Frobenius norm yield

‖Ax‖ = ‖Ax‖F ≤ ‖A‖F‖x‖F = ‖A‖F‖x‖.

■

We now define some sets used in proofs. Let AG be the set of points which are at least G away

from any change point:

AG = ⋃
j=1,...,q+1

A j,G where A j,G = {
k : k j−1 +G+1≤ k ≤ k j −G

}
. (B.3.4)

The sets

B(1)
G = ⋃

j=1,...,q+1
B(1)

j,G , where B(1)
j,G = {

k : k+1≤ k j ≤ k+G
}
, and (B.3.5)

B(2)
G = ⋃

j=1,...,q+1
B(2)

j,G , where B(2)
j,G = {

k : k−G+1≤ k j ≤ k
}

(B.3.6)

contain points k such that a change point is within distance G to the right and to the left

respectively. We define BG = B(1)
G ∪B(2)

G . For each j = 1, . . . , q, we define the point k j,T to be the

smallest k such that k ∈T and |k−k j| is minimised, i.e.

k j,T = argmin
k∈T

|k−k j|. (B.3.7)

By the definition of T , we have the bound |k j −k j,T | ≤ R/2≤G/2.

Lemma B.16 shows that parameter estimates under the grid-based method are
p

G -consistent.

Lemma B.16. Let Assumptions 4.1–4.4 hold. Then,
p

G
∥∥âk j,T +1,k j,T +G −a j+1

∥∥=OP (G−1/2) andp
G

∥∥âk j,T −G+1,k j,T −a j
∥∥=OP (G−1/2) for all k j,T , j = 1, . . . , q.

Proof. Lemma B.6 holds, so for each j = 1, . . . , q, we have k j,T ∈ B(1)
j,G ∪B(2)

j,G . The statement

follows by Reckrühm (2019), Lemma 3.1.11 parts (b) and (c). ■

When q ≥ 1, we show in Theorems B.17 and B.18 that grid-based procedures have asymptotic

power 1.

Theorem B.17. Let H1 be true, so that q ≥ 1. Let Assumptions 4.1–4.5 hold. Then, using the

score grid-based procedure,
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(a)

∀z ∈ R, lim
n→∞P (a(n/G)TT (G, ã)−b(n/G)≥ z)= 1

(b) The same holds with the estimator â1,n in (4.6):

∀z ∈ R, lim
n→∞P

(
a(n/G)TT (G, â1,n)−b(n/G)≥ z

)= 1

(c) We can replace Σk(ã) with an estimator Σ̂k(ã) as in (4.7) or (4.9) and the results of part (a)

and (b) hold.

Proof. By Lemma B.8 the invariance principle holds for the estimating function series. We have

Assumption 4.4 on the bandwidth. The estimator â1,n obeys the bounds of Lemma B.10, while

Σ̂k(ã) as in (4.7) or (4.9) meets Assumption 4.7 (a) by Lemmas B.22 and B.24. By Assumption 4.5,

all changes are detectable. The statement then follows similarly to the proof of Reckrühm (2019),

Theorem 2.1.5. ■

Theorem B.18. Let H1 be true, so that q ≥ 1. Let Assumptions 4.1–4.4 and 4.5′ hold. Then,

(a)

∀z ∈R lim
n→∞P (a(n/G)WT (G)−b(n/G)≥ z)= 1.

(b) The result in (a) holds when evaluating Wk(G) with estimators Γ̂k, with Σ̂k as in (B.1.5) or (B.1.7),

in place of Γk.

Proof. Lemma B.12 holds on the moments of the estimating function, and we have Assump-

tion 4.4 on the bandwidth. The estimator Γ̂k meets Assumption B.1 by Remark B.1 and Lemmas

B.26 and B.27. The proof then follows similarly to that of Reckrühm (2019) Theorem 3.1.12.

(a) Similar to the proof of Reckrühm (2019) Theorem 2.1.5 it is sufficient to show that

WT (G)− z+b(n/G)
a(n/G)

P→∞, since the inequality a(n/G)WT (G)−b(n/G)≥ z is equivalent to

WT (G)− z+b(n/G)
a(n/G)

≥ 0.

We consider Wk j (G) and Wk j,T (G), assuming k j ≥ k j,T and k j,T ∈ B(1)
G . This is done without loss

of generality by symmetry of the argument around k j, and we consider k j,T ∈ B(2)
G in the second

case. Then a∗ = (1−w)a j +wa j+1 where w = |k j −k j,T |/G ≤ R/(2G)≤ 1/2.
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First we use WT (G) ≥Wk j,T (G), before we split the statistic Wk j,T (G) into noise and signal.

We can apply Lemmas B.9, B.15, and B.16 to show

WT (G)=max
k∈T

Wk(G)≥Wk j,T (G)=
p

Gp
2

∥∥∥Γ−1/2
k j,T

(
âk j,T +1,k j,T +G − âk j,T −G+1,k j,T

)∥∥∥
≥

p
Gp
2

(∥∥∥Γ−1/2
k j,T

(
a j+1 −a∗)∥∥∥−∥∥∥Γ−1/2

k j,T

(
âk j,T +1,k j,T +G −a j+1 − (âk j,T −G+1,k j,T −a∗)

)∥∥∥)
≥

p
Gp
2
‖Γ−1/2

k j,T

(
a j+1 −a∗)‖

−
p

Gp
2

∥∥∥Γ−1/2
k j,T

∥∥∥
F

(‖âk j,T +1,k j,T +G −a j+1‖+‖âk j,T −G+1,k j,T −a∗‖)
=

p
Gp
2

∥∥∥Γ−1/2
k j,T

(
a j+1 −a∗)∥∥∥+OP (G−1)

=
p

Gp
2

∥∥∥Γ−1/2
k j,T

(
a j+1 −a∗)∥∥∥+OP (1),

since
∥∥∥Γ−1/2

k j

∥∥∥
F
=O(1) and G−1 =O(1) for G ≥ 1. Then, since Σ( j) and V ( j)

(
a j

)
are positive definite,

we have that

Γk j,T =V ( j)
(
a j

)−1
Σ( j)

(
V ( j)

(
a j

)−1
)>

is a positive definite matrix. This implies that Γ−1
k j

is positive definite also. Hence, on noting that

a j+1 6= a∗, we have that

∥∥∥Γ−1/2
k j,T

(
a j+1 −a∗)∥∥∥=

√(
a j+1 −a∗)

Γ−1
k j,T

(
a j+1 −a∗)>

=
√(

a j+1 −a∗)(
V ( j)

(
a j

)−1
Σ( j)

(
V ( j)

(
a j

)−1
)>)−1 (

a j+1 −a∗)>
≥ (1−w)cδ,n.

Since z+b(n/G)
a(n/G) = o(

p
G ) by Assumption 4.4, using Assumption 4.5 we can conclude that

WT (G)− z+b(n/G)
a(n/G)

≥
√

G(1−w)cδ,np
2

+OP (1)− z+b(n/G)
a(n/G)

=
p

G
( (1−w)cδ,np

2
+ oP (1)

)
P→∞,

which implies part (a).

(b) By Assumption B.1 on the estimator sequence, we have
∥∥∥Γ̂−1/2

k j,T

∥∥∥
F
< ∞, so the same

arguments as in part (a) can be applied here to obtain

ŴT (G)≥
p

Gp
2

∥∥∥Γ̂−1/2
k j,T

(
a j+1 −a∗)∥∥∥+OP (1),

and hence ∥∥∥Γ̂−1/2
k j,T

(
a j+1 −a∗)∥∥∥≥ (1−w)cδ,n.
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Finally, similar to (a) we can conclude that

ŴT (G)− z+b(n/G)
a(n/G)

≥
p

G
(
(1−w)cδ,n + oP (1)

)→∞,

which yields the statement of (b). ■

We show in Theorems B.19 and B.20 that the grid-based procedures estimate q correctly, and

in Corollaries B.19.1 and B.20.1 that the procedures give consistent location estimators.

Theorem B.19. Let q ≥ 1. Let Assumptions 4.1–4.4, 4.5′, and 4.6 hold. Then, using the Wald

grid-based procedure,

(a) P(q̂ = q)= 1 as n →∞.

(b) The result holds using an estimator Γ̂k, with Σ̂k as in (B.1.5) or (B.1.7), in place of the true

Γk.

Proof. Here, we adapt the proof of Reckrühm (2019), Theorem 3.1.15 to the grid setting. The

forwards/backwards inequalities of Lemma B.7 hold. The estimator Γ̂k meets Assumption B.1

by Remark B.1 and Lemmas B.26 and B.27. Define AG,T = AG ∩T as the set corresponding to

AG in (B.3.4) for the grid procedure. We also use B(1)
j,(1−ε)G and B(2)

j,(1−ε)G as per (B.3.5) and (B.3.6),

and ε as in (4.5). By the localisation criterion, we only need to consider k in AG,T or in the set

B(1−ε)G,T = B(1−ε)G ∩T . For the MOSUM Wald procedure, we have that

P(q̂ = q)≥P

(
max

k∈AG,T
Wk(G)< D(G,α), min

k∈B(1−ε)G,T
Wk(G)≥ D(G,α)

)
≥P

(
max

k∈AG,T
Wk(G)< D(G,α)

)
+P

(
min

k∈B(1−ε)G ,T
Wk(G)≥ D(G,α)

)
−1.

Thus, it is sufficient to show that

1. P
(
maxk∈AG,T Wk(G)< D(G,α)

)→ 1, and

2. P
(
mink∈B(1−ε)G,T Wk(G)≥ D(G,α)

)→ 1.

Part (1) is simple to see, since P
(
maxk∈AG Wk(G)< D(G,α)

)→ 1 is shown to be true in Reck-

rühm (2019), Theorem 3.1.15, and AG,T ⊂ AG , so maxk∈AG,T Wk(G) < maxk∈AG Wk(G). Also,

part (2) is shown to hold with r = 1 without loss of generality, since mink∈B(1−ε)G,T Wk(G) ≥
mink∈B(1−ε)G Wk(G). ■

Corollary B.19.1. Let the conditions of Theorem B.19 hold. Using the Wald grid-based procedure,

P( max
1≤ j≤q

|k̂ j −k j| <G)→ 1,

and in particular part (b) of Theorem B.2 holds.
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Proof. We have that{
min

k∈B(1−ε)G,T
Wk(G)≥ D (G,α) ; q̂ = q

}
⊂

{
max
1≤ j≤q̂

∣∣k̂ j −k j
∣∣<G; q̂ = q

}
,

so by Theorems B.18 and B.19,

P

(
max
1≤ j≤q̂

∣∣k̂ j −k j
∣∣<G; q̂ = q

)
≥P

(
min

k∈B(1−ε)G,T
Wk(G)≥ D (G,α) ; q̂ = q

)
→ 1.

■

Theorem B.20. Let q ≥ 1. Let Assumptions 4.1–4.6 hold. Then, using the score grid-based

procedure,

(a) P(q̂(ã)= q)= 1 as n →∞.

(b) The results hold using ã= â1,n.

(c) The results hold using an estimator Σ̂k(ã) as in (4.7) or (4.9) in place of the true Σk(ã).

Proof. For the MOSUM score procedure, we make similar arguments to the proof of Theo-

rem B.19 adapting Reckrühm (2019), Theorem 2.1.8. ■

Corollary B.20.1. Let the conditions of Theorem B.20 hold. Using the score grid-based procedure,

P( max
1≤ j≤q

|k̂ j(ã)−k j| <G)→ 1,

and in particular part (b) of Theorem 4.2 holds.

Proof. The result holds similarly to Corollary B.19.1. ■

Proof of Theorem 4.4

Proof. Lemma B.14, Theorem B.17, Theorem B.20 and Corollary B.20.1 hold, so the statement

holds similarly to the proof of Theorem 4.2. ■

Proof of Theorem B.3

Proof. Lemma B.14, Theorem B.18, Theorem B.19 and Corollary B.19.1 hold, so the statement

holds similarly to the proof of Theorem B.2. ■
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B.3.5 Estimators

Here we verify that the estimators proposed in Sections 4.3.2 and B.1.1 are consistent in the

sense of Assumptions 4.7.

By the definition of the piecewise stationary VAR model, for each j = 1, . . . , q+1 the covariance

matrix Σ( j) is equal to the Kronecker product of S, partitioned into scalar components sii′ , and

C( j):

Σ( j) = S⊗C( j) =


s11C( j) s12C( j) . . . s1pC( j)

s21C( j) s22C( j)
...

...
. . .

sp1C( j) . . . sppC( j)

 .

We start by stating a uniform law of large numbers which applies to matrix estimators.

Lemma B.21. (Kirch and Reckrühm, 2022, Lemma D.1 (b)) Let ν′ > 0. Let {F(X t, ã)}n
t=1 be a

stationary and ergodic random sequence with values in Ra×b satisfying

(a) IE
(
sup
ã∈Θ

‖F(X t, ã)‖2+ν′
F

)
<∞, and (b) IE

(
sup
ã∈Θ

‖∇vech(F(X t, ã))‖2+ν′
F

)
<∞,

where vech :Ra×b →Rab. Then we have

sup
ã∈Θ

max
0≤k≤n−G

1
G

∥∥∥∥∥ k+G∑
t=k+1

{F(X t, ã)− IE(F(X t, ã))}

∥∥∥∥∥
F

= oP (1).

B.3.5.1 Score estimators

Lemma B.22. Let Assumptions 4.1–4.4 hold. Σ̂(2)
k in (4.9) meets Assumption 4.7.

Proof. Part (b) holds with probability 1 when G ≥ d(dp+1). We show that part (a) holds by

verifying the conditions of Lemma B.21, firstly under H0. Define the function

F(X t, ã, s, e)= (
H t(ã)− H̄s,e(ã)

)(
H t(ã)− H̄s,e(ã)

)>,

with inspection parameter ã. We can then express the estimator as

Σ̂
(2)
k = 1

2G

k+G∑
t=k+1

F(X t, ã,k+1,k+G)+ 1
2G

k∑
t=k−G+1

F(X t, ã,k−G+1,k).

We hence have that, for any s ≤ t ≤ e,

IE
(
sup
ã∈Θ

‖F(X t, ã, s, e)‖2+ν̃/2
F

)
≤ IEsup

ã∈Θ

(
‖H t(ã)‖2(2+ν̃/2) + 2

e− s+1
‖H t(ã)H̄>

s,e(ã)‖2+ν̃/2 +‖H̄s,e(ã)‖2(2+ν̃/2)
)

<∞,

182



B.3. PROOFS AND SUPPORTING RESULTS

and condition (a) of Lemma B.21 holds with ν′ = ν̃/2. Condition (b) of Lemma B.21 holds by

application of Lemma B.6 and the product rule. The series {F(X t, ã, s, e)}n
t=1 is measurable, so the

ergodic and stationary properties of {X t}n
t=1 carry over.

By Lemma B.21 we have

sup
ã∈Θ

max
0≤k≤n−G

1
G

∥∥∥∥∥ k+G∑
t=k+1

{F(X t, ã,k+1,k+G)− IE(F(X t, ã,k+1,k+G))}

∥∥∥∥∥
F

= oP (1).

We have IE(F(X t, ã, s, e))=Σ(1)(ã) for all pairs s, e. Hence,
∥∥Σ̂k(ã)−Σ(1)(ã)

∥∥
F = oP (1) for all k. It

holds that Σ(1)(ã) is invertible as a result of Assumptions 4.1–4.2, and Σ̂k(ã) is also invertible for

sufficiently large G (with probability 1), so by continuity of the matrix root operation and the

Continuous Mapping Theorem we have

max
G≤k≤n−G

∥∥∥(Σ̂k(ã))−1/2 − (Σ(1)(ã))−1/2
∥∥∥

F
= oP (1),

so part (a) holds.

Now letting q ≥ 1, we verify Assumption 4.7 (a). That

max
k j−1+G≤k≤k j−G

∥∥∥(Σ̂k(ã))−1/2 − (Σk(ã))−1/2
∥∥∥

F
= oP (1)

follows similarly to the above verification of part (a) under the null. We must consider the effect of

estimating at the boundary of regimes, however, since for t = k j +1, . . . ,k j +d the regressor Xt−1

can contain at most d observations drawn from the previous regime. Since d is fixed and G →∞
with n, for each j = 1, . . . , q, and for all k such that min(|k−k j|, |k+G−k j|)≥G, it holds that

sup
ã∈Θ

1
G

∥∥∥∥∥ k+G∑
t=k+1

{F(X t, ã,k+1,k+G)−Σk(ã)}

∥∥∥∥∥= oP (1).

Again by the Continuous Mapping Theorem, the result holds. ■

We show in Lemma B.23 that the error covariance estimator (4.8) satisfies the conditions for

Lemma B.21, and is hence consistent.

Lemma B.23. Let Assumptions 4.1–4.4 hold. Recall Ŝk(ã) in (4.8). Then, for all G ≤ k ≤ n−G,

sup
ã∈Θ

∥∥Ŝk(ã)−S(ã)
∥∥

F = oP (1).

Proof. We verify that the conditions of Lemma B.21 hold. Consider the function F t(ã) =
ε̂t(ã)ε̂>t (ã). Over a compact parameter spaceΘ, we have that supã∈Θ‖ã‖F <∞. We can decompose

F t(ã) as follows:

F t(ã)= (X t − ãXt−1)(X t − ãXt−1)>

= X tX>
t − X tX

>
t−1ã>− ãXt−1X>

t + ãXt−1X
>
t−1ã>,
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and this allows us to bound the expectation of the supremum over Θ:

IE
(
sup
ã∈Θ

‖F t(ã)‖2+ν′
F

)
= IE

(
sup
ã∈Θ

∥∥X tX>
t − X tX

>
t−1ã>− ãXt−1X>

t + ãXt−1X
>
t−1ã>∥∥2+ν′

F

)
≤ IEsup

ã∈Θ

(∥∥∥X tX>
t ‖2+ν′

F +2‖X tX
>
t−1ã>‖2+ν′

F +‖ãXt−1X
>
t−1ã>

∥∥∥2+ν′

F

)
≤ IE

(
‖X tX>

t ‖2+ν′
F

)
+2IE

(
sup
ã∈Θ

‖X tX
>
t−1ã>‖2+ν′

F

)
+ IE

(
sup
ã∈Θ

‖ãXt−1X
>
t−1ã>‖2+ν′

F

)
≤ IE

(
‖X tX>

t ‖2+ν′
F

)
+2sup

ã∈Θ
‖ã‖2+ν′

F IE
(
‖X tX

>
t−1‖2+ν′

F

)
+sup

ã∈Θ
‖ã‖4+2ν′

F IE
(
‖Xt−1X

>
t−1‖2+ν′

F

)
<∞, (B.3.8)

using the Cauchy-Schwartz inequality, and Assumption 4.1 with ν̃= 2ν′. Then we consider the

function

G t(ã, s, e)= (
ε̂t(ã)− ε̄s,e(ã)

)(
ε̂t(ã)− ε̄s,e(ã)

)>
= ε̂t(ã)ε̂t(ã)>− ε̂t(ã)ε̄>s,e(ã)− ε̄s,e(ã)ε̂t(ã)+ ε̄s,e(ã)ε̄>s,e(ã),

which induces the estimator

Ŝk =
1

2G

(
k+G∑

t=k+1
G t(ã,k+1,k+G)+

k∑
t=k−G+1

G t(ã,k−G+1,k)

)
.

We have that, for ν′ > 0,

IE
(
sup
ã∈Θ

‖ε̂t(ã)ε̄s,e(ã)>‖2+ν′
F

)
≤ IE

(
sup
ã∈Θ

‖ε̂t(ã)‖2+ν′‖ε̄s,e(ã)>‖2+ν′
)
≤ IE

(
sup
ã∈Θ

‖ε̂t(ã)‖2(2+ν′)
)
. (B.3.9)

We verify the 2+ν′-th power is finite:

IE
(
sup
ã∈Θ

‖G t(ã, s, e)‖2+ν′
F

)
≤ IE

(
sup
ã∈Θ

‖F t(ã)‖2+ν′
F +2‖ε̂t(ã)ε̄s,e(ã)>‖2+ν′

F +‖F̄s,e(ã)‖2+ν′
F

)
≤ IE

(
sup
ã∈Θ

‖F t(ã)‖2+ν′
F

)
+2IE

(
sup
ã∈Θ

‖ε̂t(ã)ε̄s,e(ã)>‖2+ν′
F

)
+ IE

(
sup
a∈Θ

‖F̄s,e(ã)‖2+ν′
F

)
<∞,

which follows by (B.3.8) and (B.3.9), so condition (a) of Lemma B.21 holds. Condition (b) of

Lemma B.21 follows similarly, using the product rule.

This has expectation IE(G(ã, s, e))= (1− (e− s+1)−1)IE(F t(ã))= (1− (e− s+1)−1) n −dp−1
n S(ã).

Moreover, since both functions are measurable, the ergodic and stationary properties of X t carry

over to the function sequences. Hence, by Lemma B.21, we have that

sup
ã∈Θ

max
0≤k≤n−G

1
G

∥∥∥∥∥ k+G∑
t=k+1

{F t(ã)− IE(F t(ã))}

∥∥∥∥∥
F

= oP (1), (B.3.10)
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and

sup
ã∈Θ

max
0≤k≤n−G

1
G

∥∥∥∥∥ k+G∑
t=k+1

{G t(ã,k+1,k+G)− IE(Gk(ã,k+1,k+G))}

∥∥∥∥∥
F

= oP (1).

For any k, we have∥∥∥Ŝ(2)
k (ã)−S(ã)

∥∥∥
F
=

∥∥∥∥∥ 1
2G

k+G∑
t=k+1

G t(ã,k+1,k+G)+ 1
2G

k∑
t=k−G+1

G t(ã,k−G+1,k)−S(ã)

∥∥∥∥∥
F

≤
∥∥∥∥∥ 1

2G

k+G∑
t=k+1

G t(ã,k+1,k+G)− 1
2

IE(Gk(ã,k+1,k+G))

∥∥∥∥∥
F

+
∥∥∥∥1

2
IE(Gk(ã,k+1,k+G))− 1

2
S(ã)

∥∥∥∥
F

+
∥∥∥∥∥ 1

2G

k∑
t=k−G+1

G t(ã,k−G+1,k)− 1
2

IE(Gk(ã,k−G+1,k))

∥∥∥∥∥
F

+
∥∥∥∥1

2
IE(Gk(ã,k−G+1,k))− 1

2
S(ã)

∥∥∥∥
F
= oP (1),

and we are done. ■

In Lemma B.24 we use Lemma B.23 to show that the covariance estimator Σ̂k(ã) defined

by (4.8) is consistent in the sense of Assumption 4.7.

Lemma B.24. Let Assumptions 4.1–4.4 hold. Σ̂(1)
k (ã) in (4.7) with the error covariance estimator

(4.8) meets Assumption 4.7.

Proof. Let Σ̂k(ã)= Σ̂(1)
k (ã). We begin by showing this meets Assumption 4.7 (b). By the construc-

tion of (4.7), for each k we have the inequality∥∥∥(Σ̂k(ã))−1/2
∥∥∥

F
=

∥∥∥(Ŝk(ã))−1/2 ⊗ Ĉ−1/2
k−G+1,k+G

∥∥∥
F
≤

∥∥∥(Ŝk(ã))−1/2
∥∥∥

F

∥∥∥Ĉ−1/2
k−G+1,k+G

∥∥∥
F

.

For sufficiently large n and G, both Ŝk(ã) and Ĉk−G+1,k+G are positive definite with probability 1.

As a result, the inverse square roots of both exist, so maxG≤k≤n−G
∥∥(Σ̂k(ã))−1/2∥∥

F <∞.

Next we verify Assumption 4.7 (a). By Lemma B.23, the Continuous Mapping Theorem, and

continuity of the matrix root operator, we have for each k

‖(Ŝk(ã))−1/2 − (S(ã))−1/2‖F = oP (1).

By Kirch and Reckrühm (2022), Lemma D.1 (a) we have that

max
k j−1+G≤k≤k j−G

∥∥Ĉk−G+1,k+G −C( j)
∥∥

F

= max
k j−1+G≤k≤k j−G

1p
2G

∥∥∥∥∥k+G−1∑
t=k−G

(XtX
>
t −C( j))

∥∥∥∥∥
F

=OP (

√
log(n/G)p

G
)= oP (1)
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for each j = 1, . . . , q+1. Then, since Ĉk,k+G is positive definite with probability 1 for sufficiently

large G, and by continuity of the matrix inverse root operator, we have
∥∥∥Ĉ−1/2

k,k+G

∥∥∥
F
= oP (1)

uniformly in k. Using these facts we find, for each j = 1, . . . q+1,

max
k j−1+G≤k≤k j−G

∥∥∥(Σ̂k(ã))−1/2 − (Σ( j)(ã))−1/2
∥∥∥

F

= max
k j−1+G≤k≤k j−G

∥∥∥(Ŝk(ã)⊗ Ĉk−G+1,k+G)−1/2 − (Sk(ã)⊗C( j))−1/2
∥∥∥

F

= max
k j−1+G≤k≤k j−G

∥∥∥(Ŝk(ã))−1/2 ⊗ Ĉ−1/2
k−G+1,k+G − (Sk(ã))−1/2 ⊗C−1/2

( j)

∥∥∥
F

= max
k j−1+G≤k≤k j−G

∥∥∥(Sk(ã)+ oP (1))−1/2 ⊗ (C( j) + oP (1))−1/2 − (Sk(ã))−1/2 ⊗C−1/2
( j)

∥∥∥
F

= oP (1).

■

B.3.5.2 Wald estimators

Next we verify conditions for the MOSUM Wald procedure. In finding an estimator for Γk, we

observe Remark B.1.

Remark B.1. Assumption B.1 on Γ̂k is fulfilled if

Γ̂k = V̂−1
k Σ̂k

(
V̂−1

k

)>
, (B.3.11)

where Σ̂k satisfies Assumption 4.7, and V̂ k satisfies the following:

(a)

max
k j−1+G≤k≤k j−G

∥∥∥V̂−1/2
k −V−1/2

k

∥∥∥
F
= oP

(
log(n/G)−1)

for any j = 1, . . . , q+1.

(b) For any j = 1, . . . , q it holds that

max
k:|k−k j |<G

∥∥∥V̂1/2
k

∥∥∥
F
<∞, and max

k:|k−k j |<G

∥∥∥V̂−1/2
k

∥∥∥
F
<∞.

This is a direct result of Remarks 3.1.9. and 3.1.13. of Reckrühm (2019).

Lemma B.25. Let Assumptions 4.1–4.4 hold. V̂ k in (B.1.4) meets the conditions of Remark B.1.

Proof. This follows by Lemmas B.4–B.5. The boundary issue is handled similarly to Lemma B.10.

■

We show in Lemma B.26 that the estimator in (B.1.7) meets the null and alternative consistency

conditions.
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Lemma B.26. Let Assumptions 4.1–4.4 hold. The estimator Σ̂(4)
k in (B.1.7) meets Assumption 4.7.

Proof. The necessary arguments here are the same as for Lemma B.22. ■

Finally, we show in Lemma B.27 that the estimator in (B.1.5) is consistent under the null and

the alternative.

Lemma B.27. Let Assumptions 4.1–4.4 hold. The estimator Σ̂(W)
k in (B.1.5) with error variance

estimator Ŝ(W)
in (B.1.6) meets Assumption 4.7.

Proof. Using ε̂t(âk−G+1,k) and ε̂t(âk+1,k+G), the necessary arguments here are the same as for

Lemmas B.23 and B.24. ■

B.4 η-criterion

We define an alternative location procedure to the ε-criterion of (4.5) and (B.1.3). We refer to this

as the η-criterion as per Meier et al. (2021), also called the ‘maximum-check’ in Eichinger and

Kirch (2018). For some η ∈ (0,1), the point k̂ is a change point estimator if and only if it exceeds

the critical value D and the detector at k̂ is the maximal point within its own ηG window, i.e. for

the score detector

k̂ j = argmax
k̂ j−ηG≤k≤k̂ j+ηG

T̂k(G, ã), and T̂k̂ j
(G, ã)≥ D(G,α), (B.4.1)

and for the Wald detector,

k̂ j = argmax
k̂ j−ηG≤k≤k̂ j+ηG

Ŵk(G), and Ŵk̂ j
(G)≥ D(G,α). (B.4.2)

Then q̂ is the number of these estimators. This is a more suitable procedure in cases where the

detector does not drop below the threshold between change points, as may be the case with large

bandwidths.

As a result of Lemma B.28, Theorems 4.2 and B.2 hold when changes are localised using the

η-criterion.

Lemma B.28. Fix η ∈ (0,1). Using the localisation procedures defined in (B.4.1) and (B.4.2), the

results of Theorems 4.2 and B.2 hold.

Proof. The result follows by similar arguments to the proof of Lemma D.1 of Cho and Kirch

(2021b).

■
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B.5 Computational considerations

B.5.1 Sequential estimation

Here we describe how to use sequential estimation for reducing computational costs. The com-

putation of the detector T̂k(G, ã) in (4.3) relies on the difference vector mk(G, ã), which we can

calculate with rolling sums. This also requires access to (Σ̂k+1(ã))−1 for each k =G+d, . . . ,n−G.

For the estimators (4.7) and (4.9), rather than directly calculating (n−2G)-many matrices, we

can use the recursive relationship between (Σ̂k(ã))−1 and (Σ̂k+1(ã))−1, via the Woodbury identity

(Woodbury, 1950), which reduces the operations required in the finite sample. For instance, in

the score estimator in (4.9), we have that

Σ̂k+1(ã)= Σ̂k(ã)+Hk+1+G(ã)Hk+1+G(ã)>−Hk−G(ã)Hk−G(ã)>−2Hk(ã)Hk(ã)>.

Denoting

U = (Hk+1+G(ã),−Hk−G(ã),2Hk(ã)), V = (Hk+1+G(ã),Hk−G(ã),Hk(ã))>,

we can express this update as Σ̂k+1(ã)= Σ̂k(ã)+UV , so that

(Σ̂k+1(ã))−1 = (Σ̂k(ã))−1 − (Σ̂k(ã))−1U(I3 +V (Σ̂k(ã))−1U)−1V (Σ̂k(ã))−1,

and the iteration begins from (Σ̂G+d(ã))−1. Similar arguments apply to Ĉk and Ŝk(ã) for the

estimator in (4.7).

Making similar arguments for the Wald estimators (B.1.5) and (B.1.7) is non-trivial, since

each evaluation of Σ̂k depends on new parameters âk+1,k+G and âk−G+1,k. For the former, we can

calculate the Ĉk sequentially, but not the error covariance estimator Ŝk. Procedural updating of

âs,e is possible, so we leave as further work to find a recursive formula relating the covariance

estimators.

B.5.2 Parallelisation

Both procedures are easy to parallelise. The evaluation of a statistic at each time point can be

sent to a different worker and then merged, so we can divide the overall complexity of evaluation

(see Table 5.2) by the number of workers L. When not using sequential estimation, this can be

split in any order, while when using updating estimators, the sample can be split into L many

contiguous ordered subamples.
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APPENDIX TO SEGMENTING AND FORECASTING NONSTATIONARY

FACTOR-AUGMENTED REGRESSION MODELS

C.1 Estimators

C.1.1 Factor VAR

To evaluate the score detector, we require data-driven choices for the inspection parameter ã and

the covariance matrix Σk(ã). As mentioned in Section 5.3.1, for ã we use the global least-squares

solution â1,n solving (5.8) with wt = 1.

For Σk(ã), we need an estimator which meets Assumption 5.11. We propose two estimators,

which combine an estimator for C( j) = Cov(F( j)
t ) and a choice for the error covariance S(ã) =

Cov(η̂t(ã)) where η̂t(ã)= F̂ t − ãF̂t−1. For matrices A,B such that A ∈Rn×m, let

A⊗B =


a11B a12B . . . a1mB

a21B a22B
...

...
. . .

an1B . . . anmB


be the Kronecker product. We have the estimator

Σ̂k(ã)= Ŝk(ã)⊗ Ĉk−G+1,k+G , (C.1.1)

where

Ĉs,e = 1
e− s+1

e∑
t=s
F̂t−1F̂

>
t−1.
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The matrix Σ̂k(ã) has submatrices of the form ŝi j(ã)Ĉk−G+1,k+G . For the error covariance S(ã)

we have the estimator

Ŝk(ã)= 1
2G

( k∑
t=k−G+1

(
η̂t(ã)− η̄k−G+1,k(ã)

)(
η̂t(ã)− η̄k−G+1,k(ã)

)>
+

k+G∑
t=k+1

(
η̂t(ã)− η̄k+1,k+G(ã)

)(
η̂t(ã)− η̄k+1,k+G(ã)

)>)
, (C.1.2)

where η̄s,e(ã)= 1
e− s+1

e∑
t=s
η̂t(ã).

C.1.1.1 Consistency

As F( j)
t , j = 1, . . . , q+1 is only identifiable up to the rotation F̃( j)

t = R>F( j)
t , the representation of

(5.3) as

F( j)
t =

d∑
l=1

A( j)
l F( j)

t−l +ηt

with transfer matrices A( j)
l , l = 1, . . . ,d implies

F̃( j)
t = R>F( j)

t =
d∑

l=1
R>A( j)

l RF̃( j)
t−l +R>ηt.

As such, we are interested in the parameter vectors ā j corresponding to the matrices Ā( j)
l =

R>A( j)
l R, l = 1, . . . ,d. Define the mixture

a= 1
n

q+1∑
j=1

(k j −k j−1)ā j (C.1.3)

Lemma C.1 states that the mixture (C.1.3) is consistently estimated by the least squares estimator,

and Lemma C.2 states that the divergence of the difference vector mk(G, â1,n) or m̂k(G, â1,n)

from mk(G,a) must be bounded in probability.

Let λmin,λmax respectively denote the minimum and maximum eigenvalue operators. Denote

the p-dimensional normalised eigenvectors corresponding to the j-th largest eigenvalues of Γ̂x

and Γχ, by ŵx, j and wχ, j, respectively. We further define the p× r matrices Ŵx =
[
ŵx,1, . . . ,ŵx,r

]
and Wχ =

[
wχ,1, . . . ,wχ,r

]
. Let M̂x = diag(µ̂x,1, . . . , µ̂x,r) and Mχ = diag(µχ,1, . . . ,µχ,r).

Lemma C.1. Let Assumptions 5.1–5.5 hold. Then,

‖â1,n −a‖ =OP

√
log p

n
∨ 1

p

 .

Consequently, Assumption 5.13 (a) holds for ã= â1,n with high probability.
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Proof. Define

Γacv
χ =


Γχ(0) Γχ(1) . . . Γχ(d−1)

Γχ(1) Γχ(0)
...

...
. . .

Γχ(d−1) . . . Γχ(0)

 .

and

γacv
χ =


Γχ(1)

Γχ(2)
...

Γχ(d)

 .

with the sample equivalents Γ̂acv
x and γ̂acv

x . Note that Γ̂acv
x and Ĉd+1,n are similar but averages

are taken over different intervals. We define Γacv
F and γacv

F with the block matrix entries ΓF (`),

where

ΓF (0)= 1
p

Mχ,

and ΓF (`) for `= 1, . . . ,d are defined similarly using a singular value decomposition. These have

sample equivalents Γ̂acv
F and γ̂acv

F defined with block matrix entries Γ̂F (`), where

Γ̂F (0)= 1
p

M̂x,

and Γ̂F (`) for `= 1, . . . ,d are defined similarly. Recall that the PCA estimator is only consistent

up to the rotation R, so we define Γ̃F (`) = R>ΓF (`)R as the blockwise entries of Γ̃acv
F and γ̃acv

F .

Then we define the OLS estimator as â1,n = (Γ̂acv
F )−1γ̂acv

F , while a= (Γ̃acv
F )−1γ̃acv

F .

As a result of (C.2.1) and Weyl’s inequality, for all 1≤ j ≤ r we have

1
p
|µ̂χ, j −µχ, j| ≤ 1

p
‖Γ̂x −Γχ‖=OP

√
log p

n
∨ 1

p

 ,

and from Remark 5.4 (i) we have µχ,r/p > γ for large enough n, so

p−1µ̂χ,r > γ(1+ oP (1)).

Hence, Γ̂F (0) has its minimum eigenvalue bounded below with high probability, and Γ̂acv
F has the

same eigenvalues by the properties of block matrices, so Γ̂acv
F is invertible for large enough n and

p. Then

‖(Γ̂acv
F )−1‖ = p

µ̂χ,r
< 1
γ(1+ oP (1))

=OP (1). (C.1.4)

By (C.2.1), and that ‖R‖ = 1, we have

‖Γ̂F (0)− Γ̃F (0)‖ = ‖ 1
p

M̂x − 1
p

R>MχR‖ =OP

√
log p

n
∨ 1

p

 .
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This gives a bound for ‖Γ̂F (`)− Γ̃F (`)‖ with `= 0, and the bounds for `= 1, . . . ,d follow similarly

since Γε(`)= IE(εtε
>
t−`)=O under the white noise condition on εt. Hence,

‖Γ̂acv
F − Γ̃acv

F ‖ =OP

√
log p

n
∨ 1

p

 .

Then by part 2 of Lemma A.1 of Fan et al. (2011),

‖(Γ̂acv
F )−1 − (Γacv

F )−1‖ =OP

√
log p

n
∨ 1

p

 . (C.1.5)

Similarly,

‖γ̂acv
F − γ̃acv

F ‖ =OP

√
log p

n
∨ 1

p

 . (C.1.6)

Also by Remark 5.4 (i),

‖γ̃acv
F ‖ =O(1). (C.1.7)

Then, using (C.1.4), (C.1.5), (C.1.6), and (C.1.7),

‖â1,n −a‖ = ‖(Γ̂acv
F )−1γ̂acv

F − (Γ̃acv
F )−1γ̃acv

F ‖
≤ ‖(Γ̂acv

F )−1‖‖γ̂acv
F − γ̃acv

F ‖+‖γ̃acv
F ‖‖(Γ̂acv

F )−1 − (Γ̃acv
F )−1‖

=OP (1)OP

√
log p

n
∨ 1

p

+O(1)OP

√
log p

n
∨ 1

p


=OP

√
log p

n
∨ 1

p

 .

Hence using Assumption 5.4, ‖â1,n‖ ≤ ‖â1,n −a‖+‖a‖ =OP (1). ■

Lemma C.2. Let the conditions of Lemma C.1 hold. The estimator â1,n fulfils

(i) max
k j−1+G≤k≤k j−G

1p
2G

‖mk(G, â1,n)−mk(G,a)‖ = oP

(
(log(n/G))−1/2

)
, j = 1, . . . , q+1.

(ii) max
k:|k−k j |<G

1p
2G

‖mk(G, â1,n)−mk(G,a)‖ = oP

(
(log(n/G))1/2

)
, j = 1, . . . , q.

(iii) max
G≤k≤n−G

1p
2G

‖m̂k(G, â1,n)−mk(G,a)‖ =OP
(
log2v(n)

)
.

Proof. (i) and (ii) hold by Lemma C.1 and Kirch and Reckrühm (2022), Theorem 4.4, since

OP (G)OP

(√
log p

n ∨ 1
p

)
= oP (

√
G

log(n/G) ), using n =O(p2) from Assumption 5.4. We have

max
G≤k≤n−G

1p
2G

‖m̂k(G, â1,n)−mk(G, â1,n)‖ =OP
(
log2v(n)

)
by arguments similar to Lemma 5.1, so using (i), (ii), and the triangle inequality, (iii) holds. ■
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Lemma C.3 validates Assumption 5.11.

Lemma C.3. Let the conditions of Lemma 5.1 hold. Σ̂k(ã) in (C.1.1) meets Assumption 5.11.

Proof. By similar arguments to Lemma 5.1 we have

max
G≤k≤n−G

‖Ĉ1/2
k−G+1,k+G‖ = max

G≤k≤n−G
‖Ĉk−G+1,k+G‖1/2 =OP (logv(n)),

and

max
G≤k≤n−G

‖(Ŝk(ã))1/2‖ = max
G≤k≤n−G

‖Ŝk(ã)‖1/2 =OP (logv(n)).

Combining these, we have

max
G≤k≤n−G

‖(Σ̂k(ã))1/2‖ =OP (log2v(n)).

Since the estimator is positive definite with probability 1, we also have

‖(Σ̂k(ã))−1/2‖ =λ1/2
min(Σ̂k(ã))≤λ1/2

max(Σ̂k(ã)),

so

max
G≤k≤n−G

‖(Σ̂k(ã))−1/2‖ =OP (log2v(n)),

and we are done.

■

C.1.2 Factor-augmented regression

Similarly to the factor VAR case, for the factor-augmented regression we require choices for β̃ and

Σ
y
k(β̃). As mentioned in 5.3.1, for β̃ we use the global least-squares solution β̂1,n, which solves

(5.9) with wt = 1. For Σy
k(β̃), we use

Σ̂
y
k(β̃)= σ̂2

k(β̃)Γ̂F , (C.1.8)

where we denote the estimator of ΓF as

Γ̂F = 1
n

n∑
t=1

F̂ tF̂
>
t ,

and

σ̂2
k(β̃)= 1

2G

( k∑
t=k−G+1

(
ε̂

y
t (β̃)− ε̄y

k−G+1,k(β̃)
)2 +

k+G∑
t=k+1

(
ε̂

y
t (β̃)− ε̄y

k+1,k+G(β̃)
)2

)
,

where ε̂y
t (β̃)= yt − ẑ>β̃.
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C.1.2.1 Consistency

As in Appendix C.1.1.1, F( j)
t , j = 1, . . . , q+1 is only identifiable up to the rotation F̃( j)

t = R>F( j)
t ,

so we are interested in the parameter vectors β̄ j = [R, I]β j. Define the mixture β= 1
n

∑qy+1
j=1 (ky

j −
ky

j−1)β̄ j. Lemma C.4 states that this is consistently estimated by the least squares estimator, and

Lemma C.5 states that the divergence of the difference vector mk(G, β̂1,n) or m̂k(G, β̂1,n) from

mk(G,β) must be bounded in probability.

Lemma C.4. Let Assumptions 5.1–5.6 hold. Then,

‖β̂1,n −β‖ =OP

√
log p

n
∨ 1

p

 .

Consequently, Assumption 5.13 (b) holds for β̃= β̂1,n with high probability.

Proof. The proof follows as a simpler case of the proof of Lemma C.1. ■

Lemma C.5. Let the conditions of Lemma C.4 hold. The estimator β̂1,n fulfils

(i) max
ky

j−1+G≤k≤ky
j−G

1p
2G

‖my
k(G, β̂1,n)−my

k(G,β)‖ = oP

(
(log(n/G))−1/2

)
, j = 1, . . . , qy +1.

(ii) max
k:|k−ky

j |<G

1p
2G

‖my
k(G, β̂1,n)−my

k(G,β)‖ = oP

(
(log(n/G))1/2

)
, j = 1, . . . , qy.

(iii) max
G≤k≤n−G

1p
2G

‖m̂y
k(G, β̂1,n)−my

k(G,β)‖ =OP
(
log2v(n)

)
.

Proof. (i) and (ii) hold by Lemma C.4 and Kirch and Reckrühm (2022), Theorem 4.4. (iii) holds

similarly to Lemma C.2 (iii). ■

Lemma C.6 validates Assumption 5.12.

Lemma C.6. Let the conditions of Lemma 5.1 hold. Σ̂y
k(β̃) as in (C.1.8) meets Assumption 5.12.

Proof. This follows by similar arguments to the proof of Lemma C.3. ■

C.2 Proofs

C.2.1 Factor consistency

In this subsection, we give results on our ability to recover the factor series through PCA

estimation.

Lemma C.7. There exists an r× r-orthogonal matrix R, such that

∥∥Ŵx −WχR
∥∥=OP

√
log p

n
∨ 1

p

 .
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Proof. Under Assumption 5.1 (iv) (via Remark 5.3 (ii)) Assumption 5.3 (ii), and Assumption 5.5,

Lemmas A.3 and B.1 (ii) of Fan et al. (2011) show that

max
1≤i,i′≤p

∣∣∣∣∣ 1
n

n∑
t=1

X itX i′ t − IE

(
1
n

n∑
t=1

X itX i′ t

)∣∣∣∣∣≤ max
1≤ j, j′≤r

r2λ̄2

∣∣∣∣∣ 1
n

n∑
t=1

F jtF j′ t − IE

(
1
n

n∑
t=1

F jtF j′ t

)∣∣∣∣∣
+ max

1≤i,i′≤p

∣∣∣∣∣ 1
n

n∑
t=1

εitεi′ t − IE

(
1
n

n∑
t=1

εitεi′ t

)∣∣∣∣∣+2max
1≤ j≤r
1≤i≤p

rλ̄

∣∣∣∣∣ 1
n

n∑
t=1

F jtεit

∣∣∣∣∣=OP

√
log p

n

 .

Therefore,

1
p

∥∥Γ̂x −Γχ
∥∥≤ 1

p
∥∥Γ̂x −Γx

∥∥
F + 1

p
‖Γε‖ =OP

√
log p

n
∨ 1

p

 (C.2.1)

under Assumption 5.3 (i) (by Remark 5.4 (ii)). From Theorem 2 in Yu et al. (2015), we have

∥∥Ŵx −WχR
∥∥≤ 23/2pr

∥∥Γ̂x −Γχ
∥∥

min
(
µχ,0 −µχ,1,µχ,r −µχ,r+1

) , (C.2.2)

where µχ,0 =∞ and µχ,r+1 = 0. The denominator of (C.2.2) is bounded from the below by γp by

Remark 5.4 (i), so the statement of the Lemma follows by (C.2.2). ■

Lemma C.8. For a fixed v ≥ 1+(
1/b f ∨1/bε

)
and wt ∈ {0,1}, which may be stochastic or determin-

istic, we have

max
1≤k≤n−G+1

G−1/2

∥∥∥∥∥k+G−1∑
t=k

wtεt

∥∥∥∥∥=OP
(p

p logv(n)
)
, (C.2.3)

max
1≤k≤n−G+1

G−1/2

∥∥∥∥∥k+G−1∑
t=k

wtXt

∥∥∥∥∥=OP
(p

p logv(n)
)
. (C.2.4)

Proof. The proof of (C.2.3) and (C.2.4) when all wt = 1 is given in (Barigozzi et al., 2018, Lemma

4). We note that for such wt, the exponentially decaying tail behaviour of F jt and εit in Remark 5.3

and Assumption 5.3, and the mixing property in Assumption 5.5, carries over to wtF jt and wtεit,

and hence the identical arguments are applicable to the proof of (C.2.4) for any wt. ■

In Lemma C.9, we derive a uniform bound on the partial sums of the differences between the

true and estimated factors.

Lemma C.9. With v > 0 as in Lemma C.8, we have

max
1≤k≤n−G+1

G−1/2

∥∥∥∥∥k+G−1∑
t=k

(
F̂t −R>Ft

)∥∥∥∥∥=OP
(
logv(n)

)
.
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Proof. As the factor space is identified up to rotation, we set Ft =W>
χχt/

pp =W>
χ (Xt− εt) /

pp .

Also recall that F̂t = Ŵ>
x Xt/

pp . Then,

G−1/2

∥∥∥∥∥k+G−1∑
t=k

(
F̂t −R>Ft

)∥∥∥∥∥≤ (pG)−1/2

∥∥∥∥∥k+G−1∑
t=k

(
Ŵx −WχR

)>Xt

∥∥∥∥∥+ (pG)−1/2

∥∥∥∥∥k+G−1∑
t=k

W>
χ εt

∥∥∥∥∥
and

max
1≤k≤n−G+1

(pG)−1/2

∥∥∥∥∥k+G−1∑
t=k

(
Ŵx −WχR

)>Xt

∥∥∥∥∥≤ ∥∥Ŵx −WχR
∥∥ max

1≤k≤n−G+1
(pG)−1/2

∥∥∥∥∥k+G−1∑
t=k

Xt

∥∥∥∥∥
=OP


√

log p
n

∨ 1
p

 logv(n)

 ,

from Lemmas C.7–C.8 (for the latter, set wt = 1 for all t in (C.2.4)). Also, due to (C.2.3),

max
1≤k≤n−G+1

(pG)−1/2

∥∥∥∥∥k+G−1∑
t=k

W>
χ εt

∥∥∥∥∥≤ ∥∥Wχ

∥∥ max
1≤k≤n−G+1

(pG)−1/2

∥∥∥∥∥k+G−1∑
t=k

εt

∥∥∥∥∥=OP
(
logv(n)

)
,

which completes the proof. ■

Lemma C.10 provides a supporting result for Proposition 5.1.

Lemma C.10. For a fixed k > r, let V̂= [
ŵx,r+1, . . . ,ŵx,k

]
. Then

∥∥V̂>Λ
∥∥=OP

√
p log p

n
∨ 1pp

 .

Proof. Since V̂>Ŵx =O(k−r)×r and ‖V̂‖ = 1, we have

∥∥V̂>Wχ

∥∥= ∥∥V̂>WχR
∥∥= ∥∥V̂> (

Ŵx −WχR
)∥∥≤ ∥∥Ŵx −WχR

∥∥=OP

√
log p

n
∨ 1

p

 (C.2.5)

from Lemma C.7. Recall Mχ = diag
(
µχ, j,1≤ j ≤ r

)
and ΓF = n−1 ∑n

t=1 IE
(
FtF>

t
)
, where the latter

is positive definite with its operator norm bounded by Remark 5.4. Using that Γχ =WχMχW>
χ =

ΛΓFΛ
>, we have

∥∥V̂>Λ
∥∥=

∥∥∥V̂>WχMχW>
χΛ

(
Λ>Λ

)−1
Γ−1

F

∥∥∥≤ ∥∥V̂>Wχ

∥∥∥∥Mχ

∥∥∥∥∥Λ(
Λ>Λ

)−1
∥∥∥∥∥Γ−1

F
∥∥

=OP


√

log p
n

∨ 1
p

 · p · 1pp

=OP

√
p log p

n
∨ 1pp

 .

using (C.2.5) and Assumption 5.2. ■
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Proof of Proposition 5.1

Proof. Define ε̂k
it = X it−Λ̂iF̂

k
t , where F̂k

t ∈Rk is the k-dimensional factor estimate. We first show

that V (k) attains its minimum when k = r, where

V (k)= 1
np

p∑
i=1

n∑
t=1

(
ε̂k

it

)2 +kg(n, p)= 1
np

n∑
t=1

∥∥Ŵ1:kŴ>
1:kXt

∥∥2 +kg(n, p),

where Ŵa:b = [
ŵx,a, . . . ,ŵx,b

]
for 1 ≤ a ≤ b ≤ n. Firstly, let k > r. Then, since ŵx, j, j = 1,2, . . . are

orthonormal,

V (k)−V (r)= 1
np

n∑
t=1

∥∥V̂V̂>Xt
∥∥2 + (k− r)g(n, p)

where V̂= Ŵ(r+1):k. Note that

1
np

n∑
t=1

∥∥V̂V̂>Xt
∥∥2 ≤ 2

np

n∑
t=1

∥∥V̂V̂>χt
∥∥2 + 2

np

n∑
t=1

∥∥V̂V̂>εt
∥∥2 = I + I I.

Then, using Lemma C.10,

I ≤ 2
np

n∑
t=1

‖V̂‖2 ∥∥V̂>Λ
∥∥2 ‖Ft‖2 = 2

p
OP

(
p log p

n
∨ 1

p

)
OP

(
log2/b f n

)
=OP

{(
log p

n
∨ 1

p2

)
log2/b f n

}
under Remark 5.3 (ii) and Assumption 5.4. Also,

I I = 2
p

trace

[
V̂V̂> 1

n

n∑
t=1

{
εtε

>
t − IE

(
εtε

>
t
)}]+ 2

p
trace

{
V̂V̂> 1

n

n∑
t=1

IE
(
εtε

>
t
)}

≤ 2(k− r)
np

∥∥∥∥∥ n∑
t=1

{
εtε

>
t − IE

(
εtε

>
t
)}∥∥∥∥∥+ 2(k− r)

np

∥∥∥∥∥ n∑
t=1

IE
(
εtε

>
t
)∥∥∥∥∥=OP

√
log p

n


using our Assumptions 5.3 and 5.5, and Lemma A.3 of Fan et al. (2011). Hence, under the

conditions imposed on g(n, p), we conclude that V (k)>V (r) for any fixed k > r with probability

tending to one as n, p →∞. Now, let k < r. Again,

V (k)−V (r)= 1
np

T∑
t=1

∥∥V̂V̂>Xt
∥∥2 + (r−k)g(n, p)

where V̂= Ŵ(k+1):r. Further,

1
np

n∑
t=1

∥∥V̂V̂>Xt
∥∥2 = 1

np

n∑
t=1

∥∥V̂V̂>χt
∥∥2 + 2

np

n∑
t=1
χ>

t V̂V̂>εt + 1
np

n∑
t=1

∥∥V̂V̂>εt
∥∥2

= I I I + IV +V .

Then, we can bound V = OP (
√

log p/n ) as with I I. From Lemma C.7, there exists an r× (r− k)

matrix Z̃ with orthonormal columns so that

∥∥V̂−WχZ̃
∥∥=Op

√
log p

n
∨ 1

p

 ,
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and hence∥∥∥V̂V̂>−WχZ̃Z̃>W>
χ

∥∥∥≤
∥∥∥V̂

(
V̂−WχZ̃

)>∥∥∥+∥∥(
V̂−WχZ̃

)
WχZ̃>∥∥=OP

√
log p

n
∨ 1

p

 . (C.2.6)

Note that

I I I ≥

V I︷ ︸︸ ︷
1

np

n∑
t=1

∥∥∥WχZ̃>W̃>
χχt

∥∥∥2−

V II︷ ︸︸ ︷
2

np

n∑
t=1

∥∥∥WχZ̃Z̃>W>
χχt

∥∥∥∥∥∥(
V̂>−WχZ̃Z̃>W>

χ

)
χt

∥∥∥
+ 1

np

n∑
t=1

∥∥∥(
V̂V̂>−WχZ̃Z̃>W>

χ

)
χt

∥∥∥2

︸ ︷︷ ︸
V III

.

Letting Γ̂χ = n−1 ∑n
t=1χtχ

>
t ,

V I = 1
np

n∑
t=1
χ>

t WχZ̃Z̃> (
Wχ

)>
χt =

1
p

trace
(
WχZ̃Z̃> (

Wχ

)>
Γ̂χ

)
= 1

p
trace

(
WχZ̃Z̃> (

Wχ

)>
Γχ

)
+ 1

p
trace

{
WχZ̃Z̃> (

Wχ

)> (
Γ̂χ−Γχ

)}
≤ 1

p
trace

{
WχZ̃Z̃> (

Wχ

)>
Γχ

}
+

∥∥∥WχZ̃Z̃> (
Wχ

)>∥∥∥
F
· 1

p
∥∥Γ̂χ−Γχ∥∥F

= 1
p

trace
(
WχZ̃Z̃> (

Wχ

)>
Γχ

)
+OP

√
log p

n

= 1
p

trace
(
Z̃Z̃>Mb

χ

)
+OP

√
log p

n

 ,

where p−1 ∥∥Γ̂χ−Γχ∥∥F =OP (
√

log p/n ) is analogously shown as in Lemma C.7 under Remark 5.3

(ii) and Assumption 5.4. The form of V I involves the trace of the projection of Mχ with respect to

a rank r−k projection matrix, and hence V I > 0. Also, using (C.2.6) and Remark 5.3 (ii),

∥∥∥(
V̂V̂>−WχZ̃Z̃>W>

χ

)
χt

∥∥∥=OP


√

p log p
n

∨ 1pp

 log1/b f n


and ∥∥∥WχZ̃Z̃>W>

χχt

∥∥∥=OP

(p
p log1/b f n

)
uniformly in t, and therefore V II =OP

{
(
√

log p/n ∨1/p) log2/b f n
}
. Also,

V III ≤ 1
np

n∑
t=1

∥∥∥V̂V̂>−WχZ̃Z̃>W>
χ

∥∥∥2 ∥∥χt
∥∥2 =OP

{(
logn

n
∨ 1

p2

)
log2/b f n

}
.

Combining the bounds on V I,V II and V III, we conclude that I I I is bounded away from zero

with probability tending to one. Finally, under Remark 5.3 (ii) and Assumptions 5.3 and 5.4,

Lemma B.1 (ii) of Fan et al. (2011) leads to

IV = 2
np

trace

(
V̂V̂>

p∑
t=1

χtε
>
t

)
≤ 2(r−k)

np

∥∥∥∥∥ n∑
t=1

χtε
>
t

∥∥∥∥∥=OP

√
log p

n

 ,
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which leads to V (k) > V (r) with probability converging to one. Having shown that V (k) is

minimised at r, the proof follows similarly to Corollary 1 in Bai and Ng (2002).

■

C.2.2 VAR segmentation consistency

Lemma C.11. For each j = 1, . . . , q+1, Cov(F( j)
1 )=C( j) is a positive definite covariance matrix.

Proof. This is a consequence of Remark 5.3 (i) and Assumption 5.1. ■

As a result of Lemma C.11 and Assumption 5.1, each series {H(F( j)
t ,F( j)

t−1, ã)}n
t=1 has a positive

definite covariance matrix Σ( j)(ã).

As the factors are only identifiable up to rotation, we are interested in estimating F̃ t = R>F t,

with F̃t−1 collecting the respective past observations. Define the population estimating function

H
(
F̃ t, F̃t−1, ã

)=−(F̃ t − ãF̃t−1)⊗ F̃t−1.

We monitor these for changes in expectation using the score detector

T(G, ã)= max
G≤k≤n−G

Tk(G, ã), Tk(G, ã)= 1p
2G

∥∥∥(Σk(ã))−1/2mk(G, ã)
∥∥∥ ,

where the population difference vector at time k, evaluated with inspection parameter ã, is

mk(G, ã)=
k+G∑

t=k+1
H

(
F̃ t, F̃t−1, ã

)− k∑
t=k−G+1

H
(
F̃ t, F̃t−1, ã

)
.

Proof of Lemma 5.1

Proof. Denote

Bt(ã)= (F̃ t − ãF̃t−1), and B̂t(ã)= (F̂ t − ãF̂t−1).

We have

max
G≤k≤n−G

1p
2G

‖m̂k(G, ã)−mk(G, ã)‖

≤ max
0≤k≤n−G

2p
2G

‖
k+G∑

t=k+1
H

(
F̂ t, F̂t−1, ã

)−H
(
F̃ t, F̃t−1, ã

)‖
≤ max

0≤k≤n−G

2p
2G

‖
k+G∑

t=k+1
B̂t(ã)⊗ F̂t−1 −Bt(ã)⊗ F̃t−1‖

≤ max
0≤k≤n−G

2p
2G

‖
k+G∑

t=k+1
(B̂t(ã)−Bt(ã))⊗ F̂t−1‖+ max

0≤k≤n−G

2p
2G

‖
k+G∑

t=k+1
Bt(ã)⊗ (F̂t−1 − F̃t−1)‖

= I + I I.

199



APPENDIX C. APPENDIX TO SEGMENTING AND FORECASTING NONSTATIONARY
FACTOR-AUGMENTED REGRESSION MODELS

We start by bounding I. We have that

max
0≤k≤n−G

2p
2G

‖
k+G∑

t=k+1
(B̂t(ã)−Bt(ã))⊗ F̂t−1‖

≤
√

r2d max
1≤i≤r

max
1≤i′≤rd

max
0≤k≤n−G

2p
2G

|
k+G∑

t=k+1
(B̂it −Bit)F̂i′,t−1|. (C.2.7)

Letting wit = I(B̂it −Bit ≥ 0),

max
1≤i≤r

max
1≤i′≤rd

max
0≤k≤n−G

2p
2G

|
k+G∑

t=k+1
(B̂it −Bit)F̂i′,t−1|

≤ max
1≤i≤r

max
0≤k≤n−G

2p
2G

|
k+G∑

t=k+1
wit(B̂it −Bit)| max

1≤i′≤rd
max
1≤t≤n

|F̂i′,t−1|

+ max
1≤i≤r

max
0≤k≤n−G

2p
2G

|
k+G∑

t=k+1
(1−wit)(B̂it −Bit)| max

1≤i′≤rd
max
1≤t≤n

|F̂i′,t−1| = I I I + IV .

Modifying the proof of Lemma C.9, and since ‖ã‖ =O(1) by Assumption 5.13, we have

max
1≤i≤r

max
0≤k≤n−G

1p
G

‖
k+G∑

t=k+1
wit(B̂t −Bt)‖

≤ max
1≤i≤r

max
0≤k≤n−G

1p
G

‖
k+G∑

t=k+1
wit(F̂ t − F̃ t)‖+ max

1≤i≤r
max

0≤k≤n−G

1p
G

‖ã‖‖
k+G∑

t=k+1
wit(F̂t−1 − F̃t−1)‖

≤ (1+
p

d ‖ã‖) max
1≤i≤r

max
0≤k≤n−G

1p
G

‖
k+G∑

t=k+1
wit(F̂ t − F̃ t)‖ =OP (logv(n)).

Hence,

max
1≤i≤r

max
0≤k≤n−G

1p
G

|
k+G∑

t=k+1
wit(F̂it − F̃it)| =OP (logv(n)). (C.2.8)

By Remark 5.3 (ii), using Lemma C.9,

max
1≤i′≤rd

max
1≤t≤n

|F̂i′,t−1| ≤
p

d max
1≤i≤r

max
1≤t≤n

|F̂it|

≤
p

d max
1≤i≤r

max
1≤t≤n

|F̂it − F̃it|+
p

d max
1≤i≤r

max
1≤t≤n

|F̃it| =OP (logv(n)). (C.2.9)

Combining (C.2.8)–(C.2.9), we have I I I =OP (log2v n), and by similar arguments, IV =OP (log2v n).

Using these results in (C.2.7), we bound I = OP (log2v n). Using Assumption 5.3 (iv), I I =
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OP (log2v n) follows similarly. Then,

max
G≤k≤n−G

1p
2G

‖(Σ̂k(ã))−1/2m̂k(G, ã)− (Σk(ã))−1/2mk(G, ã)‖

≤ max
G≤k≤n−G

1p
2G

‖(Σ̂k(ã))−1/2m̂k(G, ã)− (Σ̂k(ã))−1/2mk(G, ã)

+ (Σ̂k(ã))−1/2mk(G, ã)− (Σk(ã))−1/2mk(G, ã)‖

≤ max
G≤k≤n−G

1p
2G

‖(Σ̂k(ã))−1/2m̂k(G, ã)− (Σ̂k(ã))−1/2mk(G, ã)‖

+‖(Σ̂k(ã))−1/2mk(G, ã)− (Σk(ã))−1/2mk(G, ã)‖

≤ max
G≤k≤n−G

1p
2G

‖(Σ̂k(ã))−1/2‖‖m̂k(G, ã)−mk(G, ã)‖+‖(Σ̂k(ã))−1/2 − (Σk(ã))−1/2‖‖mk(G, ã)‖

=OP (log2v(n))OP (log2v(n))+OP (log2v(n)),

where the last line follows by Assumption 5.11 and Reckrühm (2019) Lemma 2.1.4. ■

In the rest of this section, we demonstrate that the data segmentation procedure for the

piecewise stationary VAR model is consistent when working with the factor series. These results

are inherited from the results for observed series given in Chapter 4. We condition on the event

{r̂ = r}, which holds with probability tending to 1 by Proposition 5.1.

Proof of Theorem 5.3

Proof. By Lemma 5.1, we have T̂k(G, ã)= Tk(G, ã)+OP (log2v(n)) for all k =G, . . . ,n−G. Similarly

to the proof of Kirch and Reckrühm (2022) Proposition 3.4, we show that

P

(
max

1≤ j≤q+1
max

k j−1+G≤k≤k j−G
T̂k(G, ã)≥ D

)
≤

q+1∑
j=1

P

(
a(n/G) max

k j−1+G≤k≤k j−G
T̂k(G, ã)−b(n/G)≥ cα

)

≤
q+1∑
j=1

P

(
a(n/G) max

k j−1+G≤k≤k j−G
(Tk(G, ã)+C log2v(n))−b(n/G)≥ cα

)

≤
q+1∑
j=1

(α+ o(1))→ 0.

Hence,

P

(
max

1≤ j≤q+1
max

k j−1+G≤k≤k j−G
T̂k(G, ã)< D

)
→ 1, and similarly when q ≥ 1,

P

(
min

1≤ j≤q
min

k:|k−k j |≤(1−ε)G
T̂k(G, ã)≥ D

)
→ 1

as n →∞, so

P (q̂(ã)= q)→ 1.
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Likewise by Kirch and Reckrühm (2022) Theorem 3.5,

P

(
q̂(ã)= q; max

1≤ j≤q

∣∣k̂ j −k j
∣∣<G

)
→ 1.

Using ã= â1,n, Assumption 5.13 (a) holds by Lemma C.1, and we have T̂k(G, â1,n)= Tk(G,a)+
OP (log4v(n)) by Lemma C.2, so the result still holds. ■

C.2.3 Regression segmentation consistency

We demonstrate that the data segmentation procedure for the regression model is consistent

when working with the factor series. These results are inherited from the results for observed

series given in Reckrühm (2019). The population estimating function is

H y (
yt, zt, β̃

)=−(yt − z>
t β̃)zt.

Over moving windows of length G, we compare these for changes in expectation using the score

detector

T y(G, β̃)= max
G≤k≤n−G

T y
k (G, β̃), T y

k (G, β̃)= 1p
2G

∥∥∥(Σy
k(β̃))−1/2my

k(G, β̃)
∥∥∥ ,

and the difference vector at time k, evaluated with inspection parameter β̃, is

my
k(G, β̃)=

k+G∑
t=k+1

H y (
yt, zt, β̃

)− k∑
t=k−G+1

H y (
yt, zt, β̃

)
.

Proof of Lemma 5.2

Proof. The proof is similar to that of Lemma 5.1, and hence omitted. ■

Proof of Theorem 5.4

Proof. The proof is similar to that of Theorem 5.3, using Lemmas 5.2, C.4 and C.5. ■

C.3 Further simulations

Settings We adopt the following two designs from Cho et al. (2022), where the common com-

ponent is drawn from a Generalised Dynamic Factor Model (GDFM). Let L denote the back-

shift operator, and [·] denote the rounding function. Both examples use n = 2000, and we vary

p = 50,100,150. The common component is generated such that χ=χ[ j]
t for k j−1 +1≤ t ≤ k j.

(GDFM1) χ[ j]
t admits a static factor model representation, as

χ
[ j]
it =

r∑
j=1

(B j
0,i j +B j

1,ii′L+B j
2,ii′L

2)ui′ t, 1≤ j ≤ q+1,
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where ui′ t ∼iid N(0,σ2
j ) with (σ1,σ2) = (1,0.5), and the MA coefficients are generated

as (B j
0,ii′ ,B

j
1,ii′ ,B

j
2,ii′) ∼iid N(0,I3) for all 1 ≤ i ≤ p and 1 ≤ i′ ≤ r when q = 0. Then se-

quentially for j = 1, . . . , q, we draw Πk
χ ⊂ {1, . . . , p} with |Πk

χ| = [0.5p] such that for all i′,
(B j

0,ii′ ,B
j
1,ii′ ,B

j
2,ii′) ∼iid N(0,I3) when i ∈ Π j

χ while (B j
0,ii′ ,B

j
1,ii′ ,B

j
2,ii′) = (B j−1

0,ii′ ,B
j−1
1,ii′ ,B

j−1
2,ii′)

when i ∉Π j
χ. We set (k1,k2,k3)= (500,1000,1500).

(GDFM2) χ[ j]
t does not admit a static factor model representation, as

χ
[ j]
it =

r∑
i′=1

{
aii′(1−αr

ii′L)−1}
ui′ t, 1≤ j ≤ q+1,

where ui′ t ∼iid N(0,1) and the coefficients ai j are drawn uniformly as ai j ∼iid U[−1,1]

with U[a,b] denoting a uniform distribution. The AR coefficients are generated as α j
i j ∼iid

U[−0.8,0.8] when q = 0 and then sequentially for j = 1, . . . , q, we draw Π
j
χ ⊂ {1, . . . , p} with

|Π j
χ| = [0.5p] such that for all i′, we have α[ j]

ii′ =−α[ j−1]
ii′ when i ∈Π j

χ and α
j
ii′ =α

[ j−1]
ii′ when

i ∉Π j
χ. We set (k1,k2)= (666,1333).

Results We report the results in Table C.3.1. We also report results localising with ε= 0.3. As

we should expect, fvarseg outperforms mosumfvar in these settings. mosumfvar estimates the lo-

cations of changes reasonably under Setting (GDFM1), but lacks detection power under (GDFM2).

As per Remark 5.1, the current mosumfvar algorithm is not designed to detect changes to the

contemporaneous structure, so allowing for changes in S may improve the results seen here.
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Table C.3.1: (GDFM1)–(GDFM2): Distributions of q̂−q and the covering metric C (P̂ ,P ) of the estimated
segmentations when q ≥ 1, and the empirical size when q = 0 returned by mosumfvar with automatic
parameter selection, using η= 0.3 and ε= 0.3, and fvarseg. The best performer for each metric is given in
bold.

q̂–q
Model Method p -3 -2 -1 0 1 2 3 CM Size

(GDFM1) mosumfvar 50 51 14 7 14 7 1 6 0.4796 0.99
(η) 100 44 14 5 21 10 4 2 0.5537 1

150 31 39 3 19 4 3 1 0.5432 0.99

mosumfvar 50 49 4 5 20 8 13 1 0.5501 1
(ε) 100 41 4 4 24 17 10 0 0.6082 1

150 31 4 1 51 11 1 1 0.7155 1

fvarseg 50 2 3 15 80 0 0 0 0.9186 0
100 1 3 11 85 0 0 0 0.9390 0
150 3 4 8 85 0 0 0 0.9261 0.01

(GDFM2) mosumfvar 50 0 86 6 1 1 1 5 0.3782 0.99
(η) 100 0 0 97 3 0 0 0 0.5788 1

150 0 0 100 0 0 0 0 0.5631 1

mosumfvar 50 0 71 11 3 4 4 7 0.4093 0.99
(ε) 100 0 0 0 0 2 4 94 0.5208 1

150 0 0 0 1 0 4 95 0.5045 1

fvarseg 50 0 0 0 99 1 0 0 0.9888 0.01
100 0 0 0 100 0 0 0 0.9915 0.01
150 0 0 0 100 0 0 0 0.9915 0.01
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APPENDIX TO FACTOR-ADJUSTED NETWORK ESTIMATION AND

FORECASTING FOR HIGH-DIMENSIONAL TIME SERIES

D.1 Information criteria for factor number selection

Here we list information criteria for factor number estimation which are implemented in fnets
and accessible by the functions fnets, fnets.factor.model and factor.number by setting the

argument ic.op at an integer belonging to {1, . . . ,6}. When fm.restricted = FALSE, we have

IC1:
(

1
p

∑p
j=b+1

1
2m+1

∑m
k=−m µ̂x, j(ωk)

)
+b · c · (m−2 +p

m/n + p−1) · log(min(p,m2,
p

n/m )),

IC2:
(

1
p

∑p
j=b+1

1
2m+1

∑m
k=−m µ̂x, j(ωk)

)
+b · c · (min(p,m2,

p
n/m ))−1/2,

IC3:
(

1
p

∑p
j=b+1

1
2m+1

∑m
k=−m µ̂x, j(ωk)

)
+b · c · (min(p,m2,

p
n/m ))−1 · log(min(p,m2,

p
n/m )),

IC4: log
(

1
p

∑p
j=b+1

1
2m+1

∑m
k=−m µ̂x, j(ωk)

)
+b · c · (m−2 +p

m/n + p−1) · log(min(p,m2,
p

n/m )),

IC5: log
(

1
p

∑p
j=b+1

1
2m+1

∑m
k=−m µ̂x, j(ωk)

)
+b · c · (min(p,m2,

p
n/m ))−1/2,

IC6: log
(

1
p

∑p
j=b+1

1
2m+1

∑m
k=−m µ̂x, j(ωk)

)
+b · c · (min(p,m2,

p
n/m ))−1 · log(min(p,m2,

p
n/m )) .

When fm.restricted = TRUE, we use one of

IC1:
(

1
p

∑p
j=b+1 µ̂x, j

)
+b · c · (n+ p)/(np) · log(np/(n+ p)),

IC2:
(

1
p

∑p
j=b+1 µ̂x, j

)
+b · c · (n+ p)/(np) · log(np/(n+ p)),

IC3:
(

1
p

∑p
j=b+1 µ̂x, j

)
+b · c · log(min(n, p))/(min(n, p)),
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IC4: log
(

1
p

∑p
j=b+1 µ̂x, j

)
+b · c · (n+ p)/(np) · log(np/(n+ p)),

IC5: log
(

1
p

∑p
j=b+1 µ̂x, j

)
+b · c · (n+ p)/(np) · log(np/(n+ p)),

IC6: log
(

1
p

∑p
j=b+1 µ̂x, j

)
+b · c · log(min(n, p))/(min(n, p)).

Whether fm.restricted = FALSE or not, the default choice is ic.op = 5.
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D.2 Dataset information

D.2.1 Energy price data

Table D.2.1 defines the four node types in the panel. Table D.2.3 describes the dataset analysed

in Data example.

Table D.2.1: Node type definitions for energy price data.

Name Definition

Zone A transmission owner’s area within the PJM Region.
Aggregate A group of more than one individual bus into a pricing node (pnode)

that is considered as a whole in the Energy Market and other various systems
and Markets within PJM.

Hub A group of more than one individual bus into a regional pricing node (pnode)
developed to produce a stable price signal in the Energy Market
and other various systems and Markets within PJM.

Extra High Voltage (EHV) Nodes at 345kV and above on the PJM system.

D.2.2 Equity volatility measures

Table D.2.3 provides the list of the 46 companies included in the application presented in

Section 6.6.2 along with their tickers and industry and sub-industry classifications according to

Global Industry Classification Standard.

D.3 Complete simulation results

Here we report the full set of simulation results for Sections 6.5.2–6.5.3, from Figure D.3.1 to

Table D.3.13.

D.3.1 Estimation

In Tables D.3.1–D.3.3, we report the estimation errors of β̂las and β̂
DS in estimating β0, and

in Tables D.3.2–D.3.4, those of Ω̂las and Ω̂DS (Ω̂ obtained with β̂
las and β̂

DS, respectively)

in estimating Ω averaged over 100 realisations, and the corresponding standard errors. In

Figures D.3.1–D.3.2 and Figure 6.7 we report FPR and TPR values for support recovery. We

additionally report the results of the TPR value when FPR is set at 0.05, with and without

thresholding the estimators as described in Section 6.3.
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Figure D.3.1: ROC curves of TPR against FPR for β̂las, β̂DS and β̂FARM in recovering the support of β0

when χt is generated under (C1) and ξt is generated under (E2)–(E4) with varying n and p, averaged over
100 realisations. Vertical lines indicate FPR = 0.05. For comparison, we also plot the corresponding curves
(from β̂

las and β̂DS) obtained under (C0) i.e. when χt = 0.
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Figure D.3.2: ROC curves of TPR against FPR for Ω̂las and Ω̂DS in recovering the support of Ω when χt
is generated under (C1)–(C2) and ξt is generated under (E1) with varying n and p, averaged over 100
realisations. Vertical lines indicate FPR = 0.05. For comparison, we also plot the corresponding curves
obtained under (C0) i.e. when χt = 0.
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Table D.2.2: Names, IDs and Types for the 50 power nodes in the energy price dataset.

Name Node ID Node Type

PJM 1 ZONE
AECO 51291 ZONE
BGE 51292 ZONE
DPL 51293 ZONE
JCPL 51295 ZONE

METED 51296 ZONE
PECO 51297 ZONE

PEPCO 51298 ZONE
PPL 51299 ZONE

PENELEC 51300 ZONE
PSEG 51301 ZONE

BRANDONSH 51205 AGGREGATE
BRUNSWICK 51206 AGGREGATE
COOKSTOWN 51211 AGGREGATE

DOVER 51214 AGGREGATE
DPL NORTH 51215 AGGREGATE
DPL SOUTH 51216 AGGREGATE

EASTON 51218 AGGREGATE
ECRRF 51219 AGGREGATE

EPHRATA 51220 AGGREGATE
FAIRLAWN 51221 AGGREGATE
HOMERCIT 51229 AGGREGATE

HOMERCIT UNIT1 51230 AGGREGATE
HOMERCIT UNIT2 51231 AGGREGATE
HOMERCIT UNIT3 51232 AGGREGATE

KITTATNY 230 51238 AGGREGATE
MANITOU 51239 AGGREGATE

MONTVILLE 51241 AGGREGATE
PENNTECH 51246 AGGREGATE

PPL_ALLUGI 51252 AGGREGATE
SENECA 51255 AGGREGATE

SOUTHRIV 230 51261 AGGREGATE
SUNBURY LBRG 51270 AGGREGATE

TRAYNOR 51277 AGGREGATE
UGI 51279 AGGREGATE

VINELAND 51280 AGGREGATE
WELLSBORO 51285 AGGREGATE

EASTERN HUB 51217 HUB
WEST INT HUB 51287 HUB
WESTERN HUB 51288 HUB

ALBURTIS 52443 EHV
BRANCHBURG 52444 EHV

BRIGHTON 52445 EHV
BURCHESHILL 52446 EHV

CALVERTC 52447 EHV
CHALKPT 52448 EHV

CONASTONE 52449 EHV
CONEMAUGH 52450 EHV

DEANS 52451 EHV
ELROY 52452 EHV
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Table D.2.3: Tickers, industry and sub-industry classifications of the 46 companies.

Name Ticker Industry Sub-industry

JPMORGAN CHASE & CO JPM Banks Diversified banks
COMERICA INC CMA Banks Regional banks
CITIGROUP INC C Banks Diversified banks

FIFTH THIRD BANCORP FITB Banks Regional banks
REGIONS FINANCIAL CORP RF Banks Regional banks

M & T BANK CORP MTB Banks Regional banks
U S BANCORP USB Banks Diversified banks

HUNTINGTON BANCSHARES HBAN Banks Regional banks
BANK OF AMERICA CORP BAC Banks Diversified banks

WELLS FARGO & CO WFC Banks Diversified banks
PNC FINANCIAL SVCS GROUP INC PNC Banks Regional banks

KEYCORP KEY Banks Regional banks
ZIONS BANCORPORATION NA ZION Banks Regional banks

TRUIST FINANCIAL CORP TFC Banks Regional banks
PEOPLE’S UNITED FINL INC PBCT Banks Regional banks

SVB FINANCIAL GROUP SIVB Banks Regional banks

AMERICAN EXPRESS CO AXP Diversified Financials Consumer finance
BANK OF NEW YORK MELLON CORP BK Diversified Financials Asset Management & Custody Banks

FRANKLIN RESOURCES INC BEN Diversified Financials Asset Management & Custody Banks
S&P GLOBAL INC SPGI Diversified Financials Financial Exchanges & Data

NORTHERN TRUST CORP NTRS Diversified Financials Asset Management & Custody Banks
RAYMOND JAMES FINANCIAL CORP RJF Diversified Financials Investment Banking & Brokerage

STATE STREET CORP STT Diversified Financials Asset Management & Custody Banks
MORGAN STANLEY MS Diversified Financials Investment Banking & Brokerage

PRICE (T. ROWE) GROUP TROW Diversified Financials Asset Management & Custody Banks
SCHWAB (CHARLES) CORP SCHW Diversified Financials Investment Banking & Brokerage

INVESCO LTD IVZ Diversified Financials Asset Management & Custody Banks
CAPITAL ONE FINANCIAL CORP COF Diversified Financials Consumer finance
GOLDMAN SACHS GROUP INC GS Diversified Financials Investment Banking & Brokerage

BLACKROCK INC BLK Diversified Financials Asset Management & Custody Banks

AFLAC INC AFL Insurance Life & Health Insurance
AMERICAN INTERNATIONAL GROUP AIG Insurance Multi-line Insurance

AON PLC AON Insurance Insurance Brokers
ARTHUR J GALLAGHER & CO AJG Insurance Insurance Brokers

LINCOLN NATIONAL CORP LNC Insurance Life & Health Insurance
LOEWS CORP L Insurance Property & Casualty Insurance

MARSH & MCLENNAN COS MMC Insurance Insurance Brokers
GLOBE LIFE INC GL Insurance Life & Health Insurance

UNUM GROUP UNM Insurance Life & Health Insurance
PROGRESSIVE CORP-OHIO PGR Insurance Property & Casualty Insurance

BERKLEY (W R) CORP WRB Insurance Property & Casualty Insurance
CINCINNATI FINANCIAL CORP CINF Insurance Property & Casualty Insurance

CHUBB LTD CB Insurance Property & Casualty Insurance
ALLSTATE CORP ALL Insurance Property & Casualty Insurance

EVEREST RE GROUP LTD RE Insurance Reinsurance
HARTFORD FINANCIAL SERVICES HIG Insurance Multi-line Insurance
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Table D.3.1: Errors of β̂las, β̂DS and β̂
FARM in estimating β0 measured by LF and L2 averaged over

100 realisations (also reported are the standard errors) under the model (E1) for the generation of ξt
and (C0)–(C2) for χt with varying n and p. We also report the TPR when FPR = 0.05 without and with
thresholding for β̂las and β̂DS.

TPR (5%)
LF L2 Without With

n p Method Mean SD Mean SD Mean SD Mean SD

(C0) 100 50 Lasso 0.633 0.177 0.68 0.163 0.836 0.243 0.815 0.262
DS 0.613 0.072 0.679 0.082 0.94 0.105 0.893 0.125

100 100 Lasso 0.854 0.142 0.88 0.129 0.517 0.27 0.466 0.283
DS 0.669 0.076 0.738 0.079 0.892 0.16 0.839 0.159

200 50 Lasso 0.421 0.048 0.473 0.059 0.999 0.004 0.997 0.009
DS 0.532 0.071 0.589 0.084 0.989 0.019 0.982 0.024

200 100 Lasso 0.454 0.034 0.52 0.056 0.999 0.004 0.996 0.008
DS 0.58 0.044 0.654 0.066 0.982 0.018 0.966 0.031

500 100 Lasso 0.402 0.034 0.441 0.041 1 0 0.987 0.020
DS 0.29 0.074 0.308 0.085 1 0.001 0.998 0.008

500 200 Lasso 0.425 0.034 0.47 0.048 1 0.001 0.986 0.024
DS 0.46 0.128 0.493 0.15 0.999 0.002 0.98 0.021

(C1) 100 50 Lasso 0.805 0.094 0.875 0.111 0.757 0.216 0.681 0.252
DS 0.815 0.084 0.883 0.107 0.748 0.19 0.684 0.209

FARM 0.914 0.047 0.954 0.088 0.404 0.127 - -

100 100 Lasso 0.863 0.077 0.925 0.098 0.66 0.228 0.561 0.257
DS 0.848 0.071 0.924 0.09 0.701 0.209 0.608 0.223

FARM 0.927 0.026 0.96 0.086 0.361 0.086 - -

200 50 Lasso 0.613 0.075 0.708 0.111 0.973 0.038 0.951 0.089
DS 0.617 0.083 0.715 0.119 0.969 0.052 0.951 0.070

FARM 0.804 0.057 0.871 0.135 0.726 0.106 - -

200 100 Lasso 0.647 0.08 0.794 0.094 0.963 0.062 0.936 0.094
DS 0.643 0.072 0.776 0.102 0.971 0.039 0.941 0.079

FARM 0.794 0.045 0.841 0.095 0.733 0.098 - -

500 100 Lasso 0.461 0.054 0.657 0.094 0.999 0.003 0.996 0.015
DS 0.48 0.057 0.665 0.107 0.999 0.004 0.998 0.006

FARM 0.625 0.037 0.725 0.124 0.961 0.03 - -

500 200 Lasso 0.501 0.058 0.763 0.083 0.999 0.003 0.996 0.008
DS 0.518 0.066 0.813 0.107 0.999 0.003 0.961 0.176

FARM 0.611 0.035 0.704 0.122 0.969 0.021 - -

(C2) 100 50 Lasso 0.721 0.118 0.756 0.116 0.819 0.236 0.805 0.246
DS 0.704 0.057 0.759 0.074 0.888 0.08 0.837 0.094

FARM 0.857 0.046 0.888 0.071 0.534 0.137 - -

100 100 Lasso 0.868 0.084 0.886 0.089 0.572 0.251 0.517 0.274
DS 0.749 0.08 0.786 0.077 0.826 0.216 0.766 0.214

FARM 0.882 0.031 0.894 0.071 0.483 0.085 - -

200 50 Lasso 0.503 0.04 0.551 0.065 0.996 0.01 0.994 0.012
DS 0.575 0.051 0.635 0.077 0.988 0.02 0.971 0.034

FARM 0.737 0.057 0.774 0.093 0.821 0.089 - -

200 100 Lasso 0.53 0.05 0.559 0.057 0.995 0.019 0.99 0.026
DS 0.568 0.042 0.625 0.062 0.987 0.015 0.973 0.023

FARM 0.726 0.046 0.722 0.064 0.83 0.078 - -

500 100 Lasso 0.374 0.026 0.417 0.042 1 0 1 0.000
DS 0.448 0.05 0.494 0.064 1 0.001 0.994 0.016

FARM 0.551 0.043 0.566 0.089 0.99 0.018 - -

500 200 Lasso 0.383 0.023 0.425 0.035 1 0 1 0.000
DS 0.478 0.033 0.528 0.045 1 0.001 0.995 0.018

FARM 0.559 0.033 0.551 0.046 0.988 0.012 - -
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Table D.3.2: Errors of Ω̂las and Ω̂DS in estimating Ω measured by LF and L2, averaged over 100
realisations (also reported are the standard errors) under the model (E1) for the generation of ξt and (C0)–
(C2) for χt with varying n and p. We also report the TPR when FPR = 0.05 without and with thresholding.

TPR (5%)
LF L2 Without With

n p Method Mean SD Mean SD Mean SD Mean SD

(C0) 100 50 Lasso 0.452 0.087 0.587 0.105 0.789 0.18 0.704 0.236
DS 0.456 0.042 0.593 0.048 0.896 0.092 0.721 0.111

100 100 Lasso 0.587 0.095 0.738 0.1 0.583 0.17 0.411 0.195
DS 0.467 0.054 0.624 0.056 0.846 0.113 0.658 0.106

200 50 Lasso 0.373 0.026 0.488 0.038 0.993 0.016 0.854 0.090
DS 0.423 0.043 0.553 0.058 0.979 0.042 0.755 0.134

200 100 Lasso 0.376 0.022 0.507 0.03 0.991 0.016 0.839 0.064
DS 0.444 0.024 0.593 0.03 0.98 0.021 0.727 0.069

500 100 Lasso 0.327 0.02 0.453 0.029 1 0.001 0.784 0.040
DS 0.236 0.045 0.328 0.064 1 0.002 0.975 0.067

500 200 Lasso 0.328 0.017 0.466 0.029 1 0.001 0.77 0.029
DS 0.336 0.059 0.473 0.09 0.999 0.003 0.845 0.123

(C1) 100 50 Lasso 0.486 0.057 0.652 0.154 0.697 0.148 0.578 0.169
DS 0.488 0.064 0.662 0.18 0.691 0.129 0.545 0.162

100 100 Lasso 0.515 0.069 0.696 0.099 0.641 0.127 0.475 0.153
DS 0.503 0.062 0.687 0.137 0.662 0.118 0.498 0.155

200 50 Lasso 0.474 0.723 0.812 2.66 0.876 0.106 0.769 0.145
DS 0.403 0.052 0.563 0.123 0.872 0.089 0.769 0.131

200 100 Lasso 0.416 0.046 0.573 0.071 0.898 0.071 0.728 0.149
DS 0.417 0.048 0.572 0.066 0.91 0.059 0.737 0.130

500 100 Lasso 0.33 0.033 0.488 0.068 0.992 0.014 0.881 0.089
DS 0.337 0.037 0.495 0.065 0.989 0.019 0.864 0.096

500 200 Lasso 0.348 0.04 0.523 0.055 0.995 0.008 0.841 0.088
DS 0.35 0.046 0.535 0.062 0.992 0.018 0.828 0.103

(C2) 100 50 Lasso 0.433 0.067 0.576 0.093 0.696 0.159 0.666 0.195
DS 0.433 0.033 0.584 0.044 0.768 0.098 0.668 0.108

100 100 Lasso 0.526 0.084 0.68 0.102 0.595 0.133 0.446 0.199
DS 0.458 0.06 0.617 0.065 0.727 0.138 0.617 0.130

200 50 Lasso 0.349 0.03 0.48 0.046 0.915 0.068 0.843 0.077
DS 0.399 0.034 0.541 0.043 0.96 0.047 0.769 0.097

200 100 Lasso 0.334 0.027 0.471 0.042 0.917 0.054 0.838 0.078
DS 0.391 0.03 0.544 0.038 0.966 0.03 0.76 0.066

500 100 Lasso 0.287 0.019 0.413 0.032 1 0.001 0.884 0.080
DS 0.321 0.043 0.456 0.058 0.998 0.008 0.819 0.086

500 200 Lasso 0.292 0.022 0.428 0.028 1 0.001 0.889 0.067
DS 0.34 0.021 0.491 0.034 1 0.002 0.775 0.050
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Table D.3.3: Errors of β̂las, β̂DS and β̂FARM in estimating β0 measured by LF and L2 averaged over 100
realisations (also reported are the standard errors) under the models (E2)–(E4) for the generation of
ξt and (C1) for χt with varying n and p. We also report the TPR when FPR = 0.05 without and with
thresholding.

TPR (5%)
LF L2 Without With

n p Method Mean SD Mean SD Mean SD Mean SD

(E2) 100 50 Lasso 0.814 0.088 0.898 0.229 0.787 0.161 0.727 0.188
DS 0.82 0.092 0.908 0.199 0.753 0.185 0.677 0.230

100 100 Lasso 0.883 0.063 0.963 0.099 0.636 0.216 0.536 0.234
DS 0.889 0.074 0.983 0.143 0.662 0.228 0.552 0.244

200 50 Lasso 0.655 0.068 0.753 0.105 0.959 0.053 0.941 0.079
DS 0.651 0.082 0.743 0.111 0.959 0.052 0.932 0.086

200 100 Lasso 0.694 0.07 0.842 0.086 0.948 0.07 0.904 0.116
DS 0.697 0.081 0.849 0.108 0.941 0.08 0.893 0.143

500 100 Lasso 0.519 0.062 0.73 0.109 0.998 0.004 0.996 0.009
DS 0.524 0.06 0.755 0.111 0.999 0.004 0.997 0.007

500 200 Lasso 0.549 0.055 0.83 0.088 0.997 0.004 0.993 0.010
DS 0.557 0.05 0.907 0.092 0.997 0.006 0.993 0.014

(E4) 100 50 Lasso 0.813 0.092 0.867 0.111 0.745 0.183 0.676 0.218
DS 0.829 0.09 0.893 0.111 0.709 0.225 0.649 0.247

100 100 Lasso 0.857 0.078 0.936 0.104 0.654 0.201 0.558 0.223
DS 0.864 0.08 0.946 0.126 0.635 0.234 0.538 0.270

200 50 Lasso 0.617 0.07 0.701 0.095 0.972 0.048 0.95 0.086
DS 0.617 0.075 0.699 0.094 0.97 0.037 0.949 0.060

200 100 Lasso 0.668 0.078 0.808 0.1 0.948 0.066 0.909 0.122
DS 0.655 0.087 0.796 0.11 0.953 0.07 0.918 0.122

500 100 Lasso 0.474 0.055 0.648 0.095 0.999 0.004 0.998 0.007
DS 0.474 0.062 0.653 0.118 0.999 0.003 0.998 0.006

500 200 Lasso 0.489 0.055 0.766 0.085 0.999 0.002 0.998 0.005
DS 0.516 0.053 0.811 0.11 0.999 0.003 0.988 0.082
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Table D.3.4: Errors of Ω̂las and Ω̂DS in estimating Ω measured by LF and L2, averaged over 100
realisations (also reported are the standard errors) under the models (E2)–(E4) for the generation of
ξt and (C1) for χt with varying n and p. We also report the TPR when FPR = 0.05 without and with
thresholding.

TPR (5%)
LF L2 Without With

n p Method Mean SD Mean SD Mean SD Mean SD

(E2) 100 50 Lasso 0.582 0.055 0.732 0.155 0.407 0.071 0.329 0.086
DS 0.582 0.054 0.726 0.105 0.396 0.076 0.323 0.099

100 100 Lasso 0.615 0.061 0.756 0.059 0.352 0.065 0.25 0.071
DS 0.621 0.059 0.765 0.064 0.35 0.066 0.243 0.078

200 50 Lasso 0.504 0.066 0.649 0.157 0.513 0.072 0.454 0.080
DS 0.502 0.038 0.638 0.06 0.514 0.065 0.452 0.087

200 100 Lasso 0.522 0.047 0.658 0.067 0.515 0.06 0.392 0.080
DS 0.525 0.048 0.669 0.064 0.518 0.063 0.392 0.089

500 100 Lasso 0.442 0.042 0.61 0.149 0.646 0.06 0.524 0.079
DS 0.436 0.042 0.594 0.135 0.635 0.058 0.53 0.085

500 200 Lasso 0.457 0.039 0.608 0.066 0.674 0.043 0.484 0.059
DS 0.447 0.038 0.598 0.063 0.659 0.041 0.493 0.064

(E4) 100 50 Lasso 0.495 0.057 0.652 0.113 0.684 0.125 0.546 0.171
DS 0.502 0.056 0.655 0.097 0.661 0.147 0.525 0.168

100 100 Lasso 0.519 0.055 0.696 0.082 0.645 0.125 0.46 0.148
DS 0.521 0.058 0.696 0.081 0.628 0.145 0.47 0.161

200 50 Lasso 0.4 0.048 0.541 0.073 0.882 0.071 0.763 0.122
DS 0.403 0.045 0.547 0.067 0.885 0.066 0.763 0.132

200 100 Lasso 0.429 0.05 0.586 0.074 0.893 0.073 0.69 0.160
DS 0.423 0.049 0.571 0.071 0.895 0.074 0.72 0.154

500 100 Lasso 0.338 0.039 0.499 0.064 0.992 0.016 0.856 0.109
DS 0.336 0.039 0.499 0.067 0.989 0.019 0.867 0.094

500 200 Lasso 0.349 0.04 0.522 0.056 0.996 0.009 0.849 0.087
DS 0.357 0.042 0.542 0.061 0.995 0.009 0.825 0.082
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D.3.2 Forecasting

See Tables D.3.6–D.3.13 reporting the errors in estimating the best linear predictors according to

different measures as well as forecasting errors, along with Table D.3.5 containing the benchmark

results obtained in the oracle setting of (C0). The estimators ξ̂
las
t+1|t and ξ̂

DS
t+1|t depend on the choice

of the in-sample estimator of χt (which automatically yields the in-sample estimator of ξt) but we

suppress this dependence in their notations.

Table D.3.5: Errors in forecasting Xn+1 by the FNETS measured by (6.24)–(6.27) averaged over 100
realisations (also reported are the standard errors) under the model (E1) for the generation of ξt and (C0)
for χt with varying n and p, which serve as a benchmark.

n p Method Mean SD n p Method Mean SD

(6.24) 100 50 Lasso 0.437 0.253 (6.26) 100 50 Lasso 0.898 0.090
DS 0.378 0.122 DS 0.896 0.077

100 100 Lasso 0.748 0.208 100 100 Lasso 0.958 0.044
DS 0.463 0.133 DS 0.913 0.045

200 50 Lasso 0.176 0.056 200 50 Lasso 0.853 0.078
DS 0.277 0.092 DS 0.87 0.069

200 100 Lasso 0.207 0.036 200 100 Lasso 0.873 0.054
DS 0.326 0.054 DS 0.891 0.046

500 100 Lasso 0.161 0.035 500 100 Lasso 0.876 0.054
DS 0.095 0.058 DS 0.868 0.065

500 200 Lasso 0.179 0.032 500 200 Lasso 0.879 0.035
DS 0.225 0.108 DS 0.884 0.041

(6.25) 100 50 Lasso 0.651 0.221 (6.27) 100 50 Lasso 0.935 0.117
DS 0.638 0.146 DS 0.94 0.109

100 100 Lasso 0.873 0.143 100 100 Lasso 0.974 0.051
DS 0.724 0.149 DS 0.951 0.071

200 50 Lasso 0.447 0.116 200 50 Lasso 0.93 0.102
DS 0.556 0.14 DS 0.939 0.091

200 100 Lasso 0.486 0.102 200 100 Lasso 0.929 0.092
DS 0.599 0.107 DS 0.936 0.078

500 100 Lasso 0.418 0.073 500 100 Lasso 0.913 0.103
DS 0.305 0.106 DS 0.906 0.113

500 200 Lasso 0.468 0.079 500 200 Lasso 0.919 0.081
DS 0.49 0.146 DS 0.919 0.083
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Table D.3.6: Forecasting errors of FNETS and FARM measured by (6.24) averaged over 100 realisations (also
reported are the standard errors) under the model (E1) for the generation of ξt and (C1)–(C2) for χt with varying n
and p. We also report the errors of restricted and unrestricted in-sample estimators of χt, 1≤ t ≤ n.

Method In-sample χn+1|n ξn+1|n Xn+1|n
n p χt ξt Mean SD Mean SD Mean SD Mean SD

(C1) 100 50 Restricted Lasso 0.355 0.095 0.517 0.358 0.732 0.181 0.491 0.206
Unrestricted 0.37 0.104 0.543 0.309 0.814 0.326 0.491 0.198

Restricted DS - - - - 0.746 0.177 0.493 0.209
Unrestricted - - - - 0.845 0.33 0.493 0.189

FARM 0.381 0.143 2.88 7.88 1.07 0.482 1.76 2.460

100 100 Restricted Lasso 0.279 0.091 0.455 0.28 0.797 0.137 0.462 0.186
Unrestricted 0.319 0.094 0.495 0.233 0.924 0.374 0.462 0.159

Restricted DS - - - - 0.78 0.128 0.453 0.174
Unrestricted - - - - 0.899 0.36 0.452 0.155

FARM 0.288 0.119 4.39 9.37 1.08 0.511 3.2 6.150

200 50 Restricted Lasso 0.287 0.07 0.517 0.383 0.52 0.186 0.41 0.205
Unrestricted 0.391 0.116 0.662 0.543 0.628 0.375 0.456 0.201

Restricted DS - - - - 0.526 0.172 0.409 0.198
Unrestricted - - - - 0.646 0.456 0.461 0.212

FARM 0.291 0.084 0.574 0.418 0.989 1.01 0.568 0.310

200 100 Restricted Lasso 0.215 0.065 0.379 0.307 0.522 0.137 0.342 0.156
Unrestricted 0.259 0.086 0.473 0.382 0.651 0.323 0.35 0.138

Restricted DS - - - - 0.509 0.119 0.342 0.156
Unrestricted - - - - 0.637 0.35 0.354 0.151

FARM 0.216 0.072 0.539 0.696 0.873 0.481 0.516 0.452

500 100 Restricted Lasso 0.148 0.022 0.224 0.173 0.276 0.08 0.204 0.100
Unrestricted 0.274 0.091 0.386 0.231 0.429 0.235 0.262 0.120

Restricted DS - - - - 0.291 0.085 0.207 0.103
Unrestricted - - - - 0.452 0.259 0.262 0.113

FARM 0.148 0.022 0.251 0.231 0.698 0.477 0.318 0.162

500 200 Restricted Lasso 0.1 0.016 0.183 0.115 0.278 0.067 0.185 0.079
Unrestricted 0.21 0.099 0.306 0.159 0.452 0.201 0.216 0.091

Restricted DS - - - - 0.297 0.076 0.188 0.077
Unrestricted - - - - 0.474 0.218 0.22 0.095

FARM 0.1 0.016 0.207 0.16 0.673 0.373 0.291 0.154

(C2) 100 50 Restricted Lasso 0.165 0.029 0.874 2.77 0.596 0.19 0.444 0.318
Unrestricted 0.379 0.145 0.639 0.585 0.673 0.226 0.58 0.327

Restricted DS - - - - 0.565 0.116 0.431 0.296
Unrestricted - - - - 0.607 0.161 0.569 0.331

FARM 0.167 0.031 3.04 18.1 0.846 0.197 0.798 0.992

100 100 Restricted Lasso 0.118 0.03 0.573 1.26 0.779 0.132 0.454 0.302
Unrestricted 0.333 0.165 0.57 0.628 0.803 0.126 0.611 0.278

Restricted DS - - - - 0.619 0.133 0.39 0.257
Unrestricted - - - - 0.674 0.131 0.558 0.253

FARM 0.118 0.03 4.82 37.9 0.9 0.185 0.917 1.820

200 50 Restricted Lasso 0.125 0.016 0.77 2.43 0.343 0.09 0.265 0.233
Unrestricted 0.509 0.142 0.667 0.439 0.451 0.218 0.522 0.293

Restricted DS - - - - 0.405 0.087 0.287 0.244
Unrestricted - - - - 0.464 0.177 0.541 0.273

FARM 0.136 0.029 0.75 2.42 0.668 0.202 0.397 0.357

200 100 Restricted Lasso 0.081 0.017 0.333 0.878 0.352 0.082 0.229 0.186
Unrestricted 0.271 0.128 0.449 0.42 0.427 0.133 0.385 0.213

Restricted DS - - - - 0.378 0.071 0.242 0.198
Unrestricted - - - - 0.424 0.098 0.392 0.209

FARM 0.081 0.017 0.248 0.507 0.716 0.179 0.326 0.235

500 100 Restricted Lasso 0.057 0.007 0.289 0.903 0.189 0.045 0.135 0.107
Unrestricted 0.37 0.132 0.536 0.553 0.284 0.142 0.361 0.189

Restricted DS - - - - 0.244 0.055 0.154 0.116
Unrestricted - - - - 0.329 0.153 0.373 0.182

FARM 0.06 0.013 0.323 1.07 0.553 0.239 0.241 0.172

500 200 Restricted Lasso 0.036 0.006 0.214 0.517 0.176 0.03 0.108 0.087
Unrestricted 0.214 0.118 0.392 0.485 0.243 0.116 0.262 0.148

Restricted DS - - - - 0.25 0.038 0.132 0.100
Unrestricted - - - - 0.297 0.091 0.286 0.153

FARM 0.036 0.006 0.202 0.493 0.529 0.182 0.21 0.141
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Table D.3.7: Forecasting errors of FNETS and FARM measured by (6.25) averaged over 100 realisations (also
reported are the standard errors) under the model (E1) for the generation of ξt and (C1)–(C2) for χt with varying n
and p.

Method χn+1|n ξn+1|n Xn+1|n
n p χt ξt Mean SD Mean SD Mean SD

(C1) 100 50 Restricted Lasso 0.682 0.277 0.87 0.158 0.654 0.208
Unrestricted 0.731 0.28 0.929 0.314 0.646 0.208

Restricted DS - - 0.883 0.201 0.653 0.210
Unrestricted - - 0.971 0.354 0.652 0.199

FARM 1.05 1.03 1.08 0.388 0.984 0.641

100 100 Restricted Lasso 0.636 0.288 0.925 0.159 0.594 0.223
Unrestricted 0.71 0.247 1.04 0.413 0.607 0.199

Restricted DS - - 0.928 0.154 0.602 0.212
Unrestricted - - 1.04 0.412 0.605 0.203

FARM 1.12 0.872 1.1 0.413 1.09 0.768

200 50 Restricted Lasso 0.704 0.357 0.742 0.208 0.633 0.266
Unrestricted 0.825 0.414 0.866 0.435 0.669 0.246

Restricted DS - - 0.755 0.211 0.635 0.258
Unrestricted - - 0.881 0.456 0.674 0.252

FARM 0.677 0.318 1.08 0.702 0.725 0.305

200 100 Restricted Lasso 0.636 0.355 0.733 0.19 0.557 0.211
Unrestricted 0.746 0.386 0.917 0.443 0.562 0.205

Restricted DS - - 0.722 0.164 0.554 0.210
Unrestricted - - 0.91 0.452 0.568 0.210

FARM 0.614 0.359 0.969 0.46 0.619 0.287

500 100 Restricted Lasso 0.461 0.22 0.536 0.123 0.449 0.187
Unrestricted 0.671 0.315 0.8 0.413 0.507 0.199

Restricted DS - - 0.545 0.125 0.447 0.178
Unrestricted - - 0.797 0.427 0.497 0.180

FARM 0.409 0.22 0.941 0.616 0.548 0.272

500 200 Restricted Lasso 0.44 0.201 0.549 0.126 0.432 0.171
Unrestricted 0.585 0.194 0.863 0.382 0.441 0.157

Restricted DS - - 0.561 0.136 0.439 0.171
Unrestricted - - 0.873 0.37 0.445 0.159

FARM 0.374 0.224 0.943 0.559 0.501 0.292

(C2) 100 50 Restricted Lasso 0.834 0.801 0.77 0.188 0.666 0.210
Unrestricted 0.857 0.347 0.805 0.174 0.758 0.199

Restricted DS - - 0.776 0.152 0.665 0.205
Unrestricted - - 0.793 0.147 0.752 0.192

FARM 1.09 1.66 0.921 0.162 0.865 0.360

100 100 Restricted Lasso 0.781 0.665 0.875 0.138 0.745 0.249
Unrestricted 0.842 0.518 0.882 0.135 0.828 0.178

Restricted DS - - 0.792 0.147 0.685 0.208
Unrestricted - - 0.818 0.161 0.782 0.172

FARM 1.08 2.54 0.924 0.156 0.873 0.451

200 50 Restricted Lasso 0.719 0.727 0.586 0.115 0.498 0.167
Unrestricted 0.847 0.233 0.641 0.168 0.678 0.177

Restricted DS - - 0.651 0.118 0.543 0.175
Unrestricted - - 0.679 0.147 0.706 0.160

FARM 0.681 0.676 0.787 0.183 0.624 0.202

200 100 Restricted Lasso 0.593 0.553 0.594 0.13 0.514 0.157
Unrestricted 0.75 0.308 0.638 0.144 0.624 0.161

Restricted DS - - 0.642 0.12 0.549 0.170
Unrestricted - - 0.671 0.123 0.64 0.150

FARM 0.482 0.35 0.829 0.177 0.647 0.223

500 100 Restricted Lasso 0.459 0.382 0.449 0.089 0.384 0.115
Unrestricted 0.808 0.336 0.526 0.16 0.594 0.148

Restricted DS - - 0.5 0.104 0.414 0.128
Unrestricted - - 0.555 0.149 0.612 0.149

FARM 0.435 0.397 0.725 0.197 0.563 0.182

500 200 Restricted Lasso 0.432 0.385 0.434 0.08 0.352 0.101
Unrestricted 0.717 0.359 0.484 0.124 0.499 0.132

Restricted DS - - 0.515 0.082 0.397 0.107
Unrestricted - - 0.549 0.112 0.536 0.127

FARM 0.385 0.329 0.702 0.197 0.516 0.126

217



APPENDIX D. APPENDIX TO FACTOR-ADJUSTED NETWORK ESTIMATION AND
FORECASTING FOR HIGH-DIMENSIONAL TIME SERIES

Table D.3.8: Forecasting errors of FNETS and FARM measured by (6.26) averaged over 100 realisations (also
reported are the standard errors) under the model (E1) for the generation of ξt and (C1)–(C2) for χt with varying n
and p.

Method χn+1 ξn+1 Xn+1
n p χt ξt Mean SD Mean SD Mean SD

(C1) 100 50 Restricted Lasso 0.677 0.316 0.957 0.063 0.79 0.144
Unrestricted 0.676 0.249 0.972 0.081 0.787 0.129

Restricted DS - - 0.962 0.062 0.794 0.145
Unrestricted - - 0.976 0.079 0.789 0.125

FARM 1.65 1.96 1.02 0.131 1.23 0.798

100 100 Restricted Lasso 0.631 0.296 0.97 0.042 0.781 0.146
Unrestricted 0.662 0.239 0.992 0.078 0.784 0.121

Restricted DS - - 0.965 0.046 0.778 0.144
Unrestricted - - 0.985 0.078 0.78 0.120

FARM 2.9 5.07 1.01 0.074 1.8 2.610

200 50 Restricted Lasso 0.721 0.376 0.922 0.074 0.794 0.195
Unrestricted 0.752 0.327 0.934 0.106 0.799 0.163

Restricted DS - - 0.925 0.074 0.795 0.194
Unrestricted - - 0.938 0.11 0.802 0.165

FARM 0.756 0.442 0.986 0.118 0.843 0.230

200 100 Restricted Lasso 0.582 0.285 0.921 0.049 0.755 0.146
Unrestricted 0.668 0.333 0.942 0.074 0.766 0.130

Restricted DS - - 0.922 0.042 0.755 0.148
Unrestricted - - 0.942 0.069 0.767 0.131

FARM 0.722 0.605 0.979 0.087 0.795 0.197

500 100 Restricted Lasso 0.524 0.327 0.882 0.055 0.7 0.160
Unrestricted 0.612 0.261 0.9 0.064 0.718 0.140

Restricted DS - - 0.882 0.055 0.701 0.161
Unrestricted - - 0.901 0.061 0.718 0.140

FARM 0.537 0.369 0.947 0.078 0.75 0.205

500 200 Restricted Lasso 0.509 0.324 0.893 0.035 0.709 0.151
Unrestricted 0.569 0.246 0.919 0.052 0.714 0.130

Restricted DS - - 0.897 0.035 0.711 0.150
Unrestricted - - 0.923 0.057 0.717 0.129

FARM 0.517 0.347 0.953 0.07 0.745 0.170

(C2) 100 50 Restricted Lasso 0.728 0.53 0.928 0.074 0.789 0.219
Unrestricted 0.768 0.278 0.934 0.074 0.839 0.180

Restricted DS - - 0.926 0.062 0.787 0.218
Unrestricted - - 0.927 0.063 0.838 0.180

FARM 1.21 2.4 0.969 0.068 0.946 0.457

100 100 Restricted Lasso 0.644 0.367 0.964 0.038 0.794 0.213
Unrestricted 0.735 0.257 0.967 0.036 0.857 0.167

Restricted DS - - 0.943 0.044 0.781 0.211
Unrestricted - - 0.951 0.048 0.846 0.168

FARM 1.1 2.27 0.981 0.043 0.918 0.511

200 50 Restricted Lasso 0.575 0.43 0.887 0.084 0.708 0.214
Unrestricted 0.749 0.26 0.917 0.108 0.817 0.161

Restricted DS - - 0.896 0.068 0.713 0.213
Unrestricted - - 0.917 0.094 0.823 0.159

FARM 0.563 0.41 0.948 0.082 0.746 0.222

200 100 Restricted Lasso 0.513 0.356 0.9 0.052 0.701 0.195
Unrestricted 0.626 0.266 0.913 0.059 0.769 0.171

Restricted DS - - 0.904 0.044 0.705 0.197
Unrestricted - - 0.912 0.05 0.771 0.172

FARM 0.501 0.337 0.959 0.063 0.732 0.203

500 100 Restricted Lasso 0.524 0.325 0.863 0.045 0.705 0.175
Unrestricted 0.688 0.285 0.878 0.052 0.779 0.152

Restricted DS - - 0.874 0.043 0.711 0.176
Unrestricted - - 0.887 0.048 0.784 0.151

FARM 0.524 0.352 0.921 0.058 0.741 0.183

500 200 Restricted Lasso 0.516 0.354 0.877 0.039 0.698 0.182
Unrestricted 0.627 0.315 0.89 0.046 0.75 0.148

Restricted DS - - 0.887 0.033 0.703 0.182
Unrestricted - - 0.896 0.038 0.757 0.149

FARM 0.519 0.369 0.931 0.047 0.733 0.183
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D.3. COMPLETE SIMULATION RESULTS

Table D.3.9: Forecasting errors of FNETS and FARM measured by (6.27) averaged over 100 realisations (also
reported are the standard errors) under the model (E1) for the generation of ξt and (C1)–(C2) for χt with varying n
and p.

Method χn+1 ξn+1 Xn+1
n p χt ξt Mean SD Mean SD Mean SD

(C1) 100 50 Restricted Lasso 0.738 0.257 0.978 0.08 0.838 0.181
Unrestricted 0.77 0.219 1.01 0.195 0.843 0.168

Restricted DS - - 0.982 0.092 0.835 0.179
Unrestricted - - 1.01 0.204 0.84 0.170

FARM 0.983 0.586 1.02 0.147 1.03 0.441

100 100 Restricted Lasso 0.685 0.243 0.99 0.062 0.809 0.168
Unrestricted 0.75 0.206 1.02 0.152 0.812 0.154

Restricted DS - - 0.984 0.069 0.811 0.165
Unrestricted - - 1 0.149 0.809 0.150

FARM 1.11 0.818 1.03 0.119 1.1 0.586

200 50 Restricted Lasso 0.767 0.284 0.96 0.087 0.851 0.202
Unrestricted 0.835 0.303 0.978 0.141 0.846 0.183

Restricted DS - - 0.961 0.093 0.855 0.203
Unrestricted - - 0.976 0.156 0.847 0.183

FARM 0.746 0.264 1 0.166 0.886 0.224

200 100 Restricted Lasso 0.678 0.265 0.963 0.1 0.799 0.171
Unrestricted 0.793 0.329 0.988 0.16 0.803 0.170

Restricted DS - - 0.964 0.094 0.799 0.177
Unrestricted - - 0.993 0.157 0.808 0.174

FARM 0.687 0.321 1.01 0.162 0.82 0.234

500 100 Restricted Lasso 0.583 0.249 0.936 0.09 0.751 0.193
Unrestricted 0.735 0.296 0.953 0.107 0.758 0.184

Restricted DS - - 0.936 0.086 0.747 0.190
Unrestricted - - 0.951 0.101 0.755 0.179

FARM 0.535 0.251 1.02 0.213 0.782 0.220

500 200 Restricted Lasso 0.55 0.259 0.925 0.09 0.746 0.168
Unrestricted 0.648 0.208 0.946 0.11 0.752 0.166

Restricted DS - - 0.93 0.093 0.746 0.169
Unrestricted - - 0.951 0.117 0.751 0.168

FARM 0.516 0.268 0.992 0.163 0.781 0.217

(C2) 100 50 Restricted Lasso 0.839 0.261 0.95 0.097 0.903 0.142
Unrestricted 0.9 0.16 0.951 0.094 0.928 0.117

Restricted DS - - 0.95 0.084 0.902 0.141
Unrestricted - - 0.944 0.084 0.928 0.112

FARM 0.982 0.543 0.972 0.098 0.963 0.203

100 100 Restricted Lasso 0.846 0.24 0.981 0.051 0.9 0.140
Unrestricted 0.891 0.141 0.984 0.051 0.942 0.102

Restricted DS - - 0.969 0.074 0.888 0.138
Unrestricted - - 0.972 0.08 0.929 0.102

FARM 0.951 0.573 0.99 0.069 0.947 0.222

200 50 Restricted Lasso 0.774 0.289 0.932 0.106 0.838 0.161
Unrestricted 0.9 0.16 0.94 0.11 0.906 0.130

Restricted DS - - 0.939 0.089 0.843 0.156
Unrestricted - - 0.944 0.089 0.915 0.118

FARM 0.762 0.262 0.964 0.088 0.874 0.172

200 100 Restricted Lasso 0.735 0.23 0.943 0.086 0.866 0.150
Unrestricted 0.818 0.174 0.956 0.1 0.896 0.126

Restricted DS - - 0.946 0.074 0.87 0.147
Unrestricted - - 0.953 0.085 0.894 0.119

FARM 0.715 0.228 0.987 0.102 0.895 0.140

500 100 Restricted Lasso 0.726 0.221 0.916 0.084 0.856 0.152
Unrestricted 0.855 0.168 0.924 0.093 0.884 0.131

Restricted DS - - 0.922 0.079 0.861 0.153
Unrestricted - - 0.93 0.09 0.888 0.130

FARM 0.717 0.232 0.952 0.088 0.879 0.154

500 200 Restricted Lasso 0.721 0.235 0.93 0.087 0.84 0.133
Unrestricted 0.82 0.204 0.941 0.091 0.86 0.110

Restricted DS - - 0.933 0.081 0.844 0.133
Unrestricted - - 0.941 0.084 0.864 0.109

FARM 0.711 0.243 0.964 0.094 0.87 0.129
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APPENDIX D. APPENDIX TO FACTOR-ADJUSTED NETWORK ESTIMATION AND
FORECASTING FOR HIGH-DIMENSIONAL TIME SERIES

Table D.3.10: Forecasting errors of FNETS and FARM measured by (6.24) averaged over 100 realisations (also
reported are the standard errors) under the models (E2)–(E4) for the generation of ξt and (C1) for χt with varying n
and p. We also report the errors of restricted and unrestricted in-sample estimators of χt, 1≤ t ≤ n.

Method In-sample χn+1|n ξn+1|n Xn+1|n
n p χt ξt Mean SD Mean SD Mean SD Mean SD

(E2) 100 50 Restricted Lasso 0.344 0.103 0.594 0.52 0.775 0.3 0.509 0.26
Unrestricted 0.342 0.099 0.582 0.507 0.912 0.75 0.493 0.231

Restricted DS - - - - 0.764 0.231 0.518 0.266
Unrestricted - - - - 0.904 0.682 0.502 0.236

100 100 Restricted Lasso 0.252 0.1 0.426 0.256 0.821 0.175 0.442 0.189
Unrestricted 0.302 0.118 0.507 0.245 0.994 0.434 0.452 0.173

Restricted DS - - - - 0.832 0.194 0.448 0.202
Unrestricted - - - - 1.02 0.433 0.454 0.178

200 50 Restricted Lasso 0.271 0.079 0.504 0.524 0.56 0.258 0.377 0.233
Unrestricted 0.381 0.119 0.604 0.402 0.748 0.452 0.42 0.21

Restricted DS - - - - 0.55 0.227 0.381 0.225
Unrestricted - - - - 0.73 0.424 0.422 0.206

200 100 Restricted Lasso 0.205 0.097 0.333 0.226 0.572 0.149 0.309 0.142
Unrestricted 0.248 0.113 0.396 0.248 0.709 0.31 0.303 0.124

Restricted DS - - - - 0.581 0.154 0.309 0.139
Unrestricted - - - - 0.709 0.317 0.301 0.127

500 100 Restricted Lasso 0.153 0.064 0.211 0.147 0.324 0.092 0.198 0.112
Unrestricted 0.262 0.106 0.369 0.254 0.603 0.492 0.238 0.118

Restricted DS - - - - 0.323 0.094 0.196 0.11
Unrestricted - - - - 0.631 0.573 0.237 0.122

500 200 Restricted Lasso 0.102 0.027 0.209 0.16 0.339 0.085 0.198 0.0887
Unrestricted 0.188 0.09 0.313 0.203 0.555 0.255 0.199 0.0853

Restricted DS - - - - 0.348 0.099 0.2 0.0877
Unrestricted - - - - 0.604 0.281 0.198 0.0852

(E4) 100 50 Restricted Lasso 0.368 0.102 0.602 0.683 0.717 0.185 0.505 0.264
Unrestricted 0.378 0.096 0.638 0.389 0.836 0.349 0.524 0.231

Restricted DS - - - - 0.735 0.192 0.518 0.281
Unrestricted - - - - 0.857 0.342 0.536 0.244

100 100 Restricted Lasso 0.295 0.083 0.518 0.373 0.802 0.174 0.529 0.201
Unrestricted 0.321 0.088 0.554 0.294 0.922 0.396 0.529 0.194

Restricted DS - - - - 0.831 0.183 0.538 0.203
Unrestricted - - - - 0.955 0.474 0.542 0.208

200 50 Restricted Lasso 0.295 0.073 0.475 0.714 0.497 0.142 0.377 0.19
Unrestricted 0.379 0.085 0.588 0.459 0.577 0.292 0.418 0.188

Restricted DS - - - - 0.497 0.144 0.382 0.199
Unrestricted - - - - 0.587 0.325 0.415 0.19

200 100 Restricted Lasso 0.213 0.057 0.374 0.465 0.534 0.144 0.327 0.152
Unrestricted 0.28 0.107 0.478 0.246 0.692 0.329 0.36 0.138

Restricted DS - - - - 0.516 0.146 0.322 0.154
Unrestricted - - - - 0.675 0.314 0.352 0.137

500 100 Restricted Lasso 0.156 0.031 0.279 0.224 0.297 0.082 0.228 0.134
Unrestricted 0.277 0.104 0.444 0.297 0.469 0.51 0.273 0.137

Restricted DS - - - - 0.294 0.083 0.227 0.135
Unrestricted - - - - 0.47 0.508 0.271 0.138

500 200 Restricted Lasso 0.104 0.021 0.209 0.166 0.288 0.073 0.193 0.0918
Unrestricted 0.223 0.111 0.352 0.231 0.494 0.386 0.224 0.11

Restricted DS - - - - 0.318 0.082 0.202 0.0986
Unrestricted - - - - 0.533 0.352 0.235 0.115
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Table D.3.11: Forecasting errors of FNETS and FARM measured by (6.25) averaged over 100 realisations (also
reported are the standard errors) under the models (E2)–(E4) for the generation of ξt and (C1) for χt with varying n
and p.

Method χn+1|n ξn+1|n Xn+1|n
n p χt ξt Mean SD Mean SD Mean SD

(E2) 100 50 Restricted Lasso 0.725 0.322 0.874 0.215 0.661 0.270
Unrestricted 0.751 0.318 0.991 0.504 0.664 0.269

Restricted DS - - 0.863 0.196 0.663 0.261
Unrestricted - - 0.978 0.499 0.668 0.261

100 100 Restricted Lasso 0.617 0.284 0.946 0.311 0.617 0.241
Unrestricted 0.768 0.35 1.08 0.464 0.623 0.214

Restricted DS - - 0.944 0.322 0.619 0.248
Unrestricted - - 1.1 0.429 0.624 0.218

200 50 Restricted Lasso 0.668 0.377 0.731 0.21 0.571 0.252
Unrestricted 0.774 0.351 0.916 0.451 0.619 0.241

Restricted DS - - 0.724 0.196 0.574 0.252
Unrestricted - - 0.901 0.429 0.615 0.237

200 100 Restricted Lasso 0.581 0.251 0.786 0.219 0.538 0.214
Unrestricted 0.65 0.234 0.967 0.4 0.52 0.200

Restricted DS - - 0.789 0.21 0.531 0.206
Unrestricted - - 0.959 0.417 0.511 0.195

500 100 Restricted Lasso 0.478 0.234 0.59 0.157 0.456 0.217
Unrestricted 0.658 0.28 0.936 0.567 0.482 0.192

Restricted DS - - 0.586 0.153 0.455 0.219
Unrestricted - - 0.964 0.598 0.486 0.205

500 200 Restricted Lasso 0.473 0.212 0.622 0.151 0.444 0.155
Unrestricted 0.605 0.244 0.977 0.432 0.426 0.150

Restricted DS - - 0.632 0.179 0.448 0.158
Unrestricted - - 1.04 0.453 0.421 0.158

(E4) 100 50 Restricted Lasso 0.698 0.431 0.829 0.162 0.632 0.247
Unrestricted 0.779 0.274 0.944 0.365 0.672 0.225

Restricted DS - - 0.846 0.161 0.649 0.264
Unrestricted - - 0.954 0.357 0.683 0.242

100 100 Restricted Lasso 0.702 0.371 0.918 0.211 0.69 0.232
Unrestricted 0.787 0.309 1.04 0.413 0.708 0.224

Restricted DS - - 0.938 0.22 0.699 0.235
Unrestricted - - 1.06 0.455 0.714 0.236

200 50 Restricted Lasso 0.619 0.331 0.687 0.15 0.589 0.232
Unrestricted 0.77 0.356 0.788 0.336 0.627 0.237

Restricted DS - - 0.692 0.145 0.587 0.239
Unrestricted - - 0.785 0.363 0.618 0.233

200 100 Restricted Lasso 0.58 0.291 0.723 0.167 0.532 0.171
Unrestricted 0.719 0.262 0.925 0.473 0.561 0.171

Restricted DS - - 0.723 0.186 0.536 0.170
Unrestricted - - 0.923 0.475 0.558 0.171

500 100 Restricted Lasso 0.527 0.277 0.556 0.145 0.466 0.199
Unrestricted 0.715 0.353 0.787 0.51 0.515 0.192

Restricted DS - - 0.543 0.134 0.473 0.201
Unrestricted - - 0.782 0.498 0.514 0.197

500 200 Restricted Lasso 0.457 0.223 0.572 0.143 0.455 0.184
Unrestricted 0.639 0.266 0.851 0.451 0.457 0.183

Restricted DS - - 0.599 0.149 0.457 0.187
Unrestricted - - 0.907 0.488 0.468 0.193



APPENDIX D. APPENDIX TO FACTOR-ADJUSTED NETWORK ESTIMATION AND
FORECASTING FOR HIGH-DIMENSIONAL TIME SERIES

Table D.3.12: Forecasting errors of FNETS and FARM measured by (6.26) averaged over 100 realisations (also
reported are the standard errors) under the models (E2)–(E4) for the generation of ξt and (C1) for χt with varying n
and p.

Method χn+1 ξn+1 Xn+1
n p χt ξt Mean SD Mean SD Mean SD

(E2) 100 50 Restricted Lasso 0.731 0.349 0.962 0.073 0.809 0.172
Unrestricted 0.7 0.301 0.99 0.164 0.802 0.165

Restricted DS - - 0.958 0.073 0.811 0.177
Unrestricted - - 0.987 0.151 0.803 0.167

100 100 Restricted Lasso 0.678 0.318 0.97 0.044 0.791 0.197
Unrestricted 0.729 0.261 0.994 0.085 0.796 0.166

Restricted DS - - 0.975 0.055 0.793 0.196
Unrestricted - - 1 0.085 0.795 0.164

200 50 Restricted Lasso 0.695 0.354 0.929 0.092 0.778 0.208
Unrestricted 0.749 0.301 0.95 0.12 0.789 0.162

Restricted DS - - 0.929 0.087 0.78 0.208
Unrestricted - - 0.949 0.118 0.79 0.159

200 100 Restricted Lasso 0.627 0.299 0.934 0.054 0.773 0.191
Unrestricted 0.642 0.236 0.957 0.08 0.768 0.167

Restricted DS - - 0.934 0.057 0.771 0.190
Unrestricted - - 0.957 0.084 0.765 0.167

500 100 Restricted Lasso 0.492 0.292 0.893 0.061 0.675 0.169
Unrestricted 0.582 0.302 0.935 0.108 0.689 0.162

Restricted DS - - 0.892 0.064 0.675 0.168
Unrestricted - - 0.935 0.106 0.689 0.166

500 200 Restricted Lasso 0.516 0.275 0.901 0.042 0.694 0.165
Unrestricted 0.575 0.263 0.931 0.06 0.695 0.150

Restricted DS - - 0.901 0.045 0.694 0.165
Unrestricted - - 0.937 0.067 0.694 0.153

(E4) 100 50 Restricted Lasso 0.761 0.54 0.946 0.064 0.826 0.203
Unrestricted 0.786 0.349 0.964 0.089 0.829 0.190

Restricted DS - - 0.947 0.061 0.828 0.204
Unrestricted - - 0.967 0.084 0.832 0.190

100 100 Restricted Lasso 0.709 0.293 0.968 0.043 0.854 0.180
Unrestricted 0.718 0.256 0.987 0.082 0.852 0.157

Restricted DS - - 0.971 0.045 0.855 0.178
Unrestricted - - 0.988 0.086 0.851 0.157

200 50 Restricted Lasso 0.617 0.315 0.907 0.085 0.767 0.178
Unrestricted 0.713 0.315 0.914 0.104 0.78 0.144

Restricted DS - - 0.909 0.081 0.77 0.175
Unrestricted - - 0.919 0.1 0.781 0.142

200 100 Restricted Lasso 0.593 0.359 0.916 0.059 0.749 0.163
Unrestricted 0.65 0.244 0.931 0.071 0.748 0.133

Restricted DS - - 0.915 0.061 0.749 0.163
Unrestricted - - 0.932 0.074 0.748 0.132

500 100 Restricted Lasso 0.55 0.352 0.886 0.067 0.72 0.191
Unrestricted 0.633 0.3 0.907 0.088 0.73 0.160

Restricted DS - - 0.886 0.073 0.718 0.190
Unrestricted - - 0.91 0.096 0.73 0.161

500 200 Restricted Lasso 0.483 0.275 0.892 0.045 0.709 0.157
Unrestricted 0.578 0.267 0.92 0.066 0.726 0.144

Restricted DS - - 0.897 0.041 0.712 0.157
Unrestricted - - 0.928 0.062 0.729 0.144
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D.3. COMPLETE SIMULATION RESULTS

Table D.3.13: Forecasting errors of FNETS and FARM measured by (6.27) averaged over 100 realisations (also
reported are the standard errors) under the models (E2)–(E4) for the generation of ξt and (C1) for χt with varying n
and p.

Method χn+1 ξn+1 Xn+1
n p χt ξt Mean SD Mean SD Mean SD

(E2) 100 50 Restricted Lasso 0.789 0.295 0.99 0.078 0.859 0.185
Unrestricted 0.802 0.303 1.04 0.23 0.858 0.185

Restricted DS - - 0.98 0.081 0.856 0.181
Unrestricted - - 1.03 0.22 0.851 0.182

100 100 Restricted Lasso 0.71 0.265 0.973 0.066 0.805 0.189
Unrestricted 0.789 0.26 0.996 0.114 0.818 0.174

Restricted DS - - 0.985 0.068 0.806 0.190
Unrestricted - - 1.01 0.112 0.817 0.176

200 50 Restricted Lasso 0.742 0.279 0.974 0.147 0.806 0.170
Unrestricted 0.813 0.298 1 0.176 0.827 0.182

Restricted DS - - 0.978 0.127 0.804 0.173
Unrestricted - - 1 0.166 0.827 0.183

200 100 Restricted Lasso 0.674 0.186 0.961 0.089 0.805 0.173
Unrestricted 0.749 0.222 0.998 0.155 0.805 0.181

Restricted DS - - 0.956 0.085 0.802 0.174
Unrestricted - - 0.995 0.16 0.801 0.181

500 100 Restricted Lasso 0.578 0.217 0.937 0.107 0.722 0.200
Unrestricted 0.701 0.271 0.987 0.183 0.727 0.196

Restricted DS - - 0.935 0.102 0.718 0.199
Unrestricted - - 0.987 0.181 0.726 0.199

500 200 Restricted Lasso 0.574 0.228 0.945 0.075 0.745 0.172
Unrestricted 0.668 0.254 0.988 0.139 0.744 0.172

Restricted DS - - 0.952 0.078 0.75 0.172
Unrestricted - - 1 0.155 0.748 0.172

(E4) 100 50 Restricted Lasso 0.787 0.373 0.974 0.07 0.875 0.191
Unrestricted 0.845 0.276 0.994 0.104 0.885 0.183

Restricted DS - - 0.972 0.07 0.878 0.195
Unrestricted - - 0.995 0.104 0.886 0.182

100 100 Restricted Lasso 0.781 0.287 0.991 0.059 0.908 0.174
Unrestricted 0.824 0.25 1.01 0.107 0.911 0.159

Restricted DS - - 0.985 0.056 0.907 0.171
Unrestricted - - 1 0.103 0.909 0.156

200 50 Restricted Lasso 0.679 0.267 0.97 0.105 0.847 0.186
Unrestricted 0.803 0.274 0.971 0.135 0.857 0.178

Restricted DS - - 0.97 0.108 0.849 0.187
Unrestricted - - 0.978 0.149 0.858 0.180

200 100 Restricted Lasso 0.662 0.308 0.974 0.071 0.825 0.176
Unrestricted 0.77 0.246 0.972 0.073 0.838 0.169

Restricted DS - - 0.975 0.074 0.826 0.179
Unrestricted - - 0.976 0.083 0.837 0.171

500 100 Restricted Lasso 0.643 0.303 0.963 0.073 0.842 0.182
Unrestricted 0.771 0.286 0.972 0.096 0.852 0.164

Restricted DS - - 0.961 0.08 0.843 0.181
Unrestricted - - 0.975 0.105 0.852 0.167

500 200 Restricted Lasso 0.576 0.289 0.974 0.071 0.856 0.162
Unrestricted 0.715 0.284 0.99 0.102 0.868 0.157

Restricted DS - - 0.975 0.066 0.858 0.160
Unrestricted - - 0.992 0.104 0.869 0.154
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