mosum.bottom_up
¶
Module Contents¶
Functions¶
|
Multiscale MOSUM algorithm with bottom-up merging |
- mosum.bottom_up.multiscale_bottomUp(x, G=None, threshold=['critical_value', 'custom'][0], alpha=0.1, threshold_function=None, eta=0.4, do_confint=False, level=0.05, N_reps=1000)¶
Multiscale MOSUM algorithm with bottom-up merging
- Parameters:
x (list) – input data
G (int) –
- vector of bandwidths; given as either integers less than len(x)/2,
or numbers between 0 and 0.5 describing the moving sum bandwidths relative to len(x)
threshold (Str) – indicates which threshold should be used to determine significance. By default, it is chosen from the asymptotic distribution at the given significance level ‘alpha`. Alternatively it is possible to parse a user-defined function with ‘threshold_function’.
alpha (float) – numeric value for the significance level with ‘0 <= alpha <= 1’; use iff ‘threshold = “critical_value”’
threshold_function (function) –
eta (float) – a positive numeric value for the minimal mutual distance of changes, relative to moving sum bandwidth (iff ‘criterion = “eta”’)
do_confint (bool) – flag indicating whether to compute the confidence intervals for change points
level (float) – use iff ‘do_confint = True’; a numeric value (‘0 <= level <= 1’) with which ‘100(1-level)%’ confidence interval is generated
N_reps (int) – use iff ‘do.confint = True’; number of bootstrap replicates to be generated
- Returns:
multiscale_cpts object containing
x (list) – input data
G (int) – bandwidth vector
threshold, alpha, threshold_function, eta – input
cpts (ndarray) – estimated change point
cpts_info (DataFrame) – information on change points, including detection bandwidths, asymptotic p-values, scaled jump sizes
pooled_cpts (ndarray) – change point candidates
do_confint (bool) – input
ci – confidence intervals
Examples
>>> import mosum >>> xx = mosum.testData("blocks")["x"] >>> xx_m = mosum.multiscale_bottomUp(xx, G = [50,100]) >>> xx_m.summary() >>> xx_m.print()