mosum.test_data
¶
Module Contents¶
Functions¶
|
Test data with piecewise constant mean |
|
Piecewise constant test signal |
- mosum.test_data.testData(model=['custom', 'blocks', 'fms', 'mix', 'stairs10', 'teeth10'][1], lengths=None, means=None, sds=None, rand_gen=np.random.normal, seed=None, rand_gen_args=[0, 1])¶
Test data with piecewise constant mean
Generate piecewise stationary time series with independent innovations and change points in the mean.
- Parameters:
model (str) – custom or pre-defined signal
lengths (int) – vector of segment lengths (custom only)
means (int) – vector of segment means (custom only)
sds (int) – vector of segment standard deviations (custom only)
rand_gen (function) – innovation function
seed (int) – random seed
rand_gen_args (ndarray) – arguments for rand_gen
- Returns:
x (ndarray) – simulated data series
mu (ndarray) – signal
sigma (float) – standard deviation
cpts (ndarray) – true change points
Examples
>>> mosum.testData() >>> mosum.testData("custom", lengths = [100,100], means=[0,1], sds= [1,1])
- mosum.test_data.testSignal(model=['custom', 'blocks', 'fms', 'mix', 'stairs10', 'teeth10'][1], lengths=None, means=None, sds=None)¶
Piecewise constant test signal
Produce vectors of mean and dispersion values for generating piecewise stationary time series.